WP.1 UNECE: Eighty-fifth session

Geneva, September 2022

Human Factors for Automated Vehicles: Prioritizing Human-Centred Design & VRU Safety

Dr. Peter C. Burns

Outline

- Overview of human factors
- Human factors concepts
- Human-Centred Design definition and benefits
- Examples of human-factors issues for automation
 - Crash case study
 - Representative vulnerable road users (VRU)
 - Branding and marketing of ADAS
- Summary

Human Factors

Human factors is a multidisciplinary science that **applies knowledge of human abilities and limitations to the design and evaluation** of technology for improved safety and usability. It should be involved throughout the development and deployment of new technologies and systems – in their design, implementation and evaluation.

- Safety
- Performance
- Usability
- Interaction design (UI)
- User experience (UX)
- Physical ergonomics

Human Factors Concepts

- Doyle's Catch Because the capabilities of automation can be demonstrated under some conditions, it should be straightforward to extend that more widely NOT (Woods, 2016).
- Humans do not perform well in the role of automation monitor, supervisor or back-up for automation failures (Sheridan, 1995).
- Human errors are consequences not causes (Reason, 2003).

Billings' Human-Centered Automation principles (Billings, 1997):

- 1. Humans must be involved
- Humans must be informed
- 3. Humans must be able to monitor the automation
- 4. Automation must be predictable
- 5. Automation must monitor the human (input/ state)
- 6. Intent must be dually communicated between automation and human.

Human-Centred Design

Definition — an approach to design that focuses on the users, their needs and requirements, by applying human factors knowledge and techniques (ISO 9241).

70% to 80% of new product development that fails does so not for lack of advanced technology but because of a failure to understand users' needs (Von Hippel, 2007).

Benefits

- Improves user experience (UX).
- Increases performance and usability makes products and services easier to use, which reduces training, documentation and support needs (and costs).
- Builds appropriate trust.
- Boosts sales/ competitiveness customers are more likely to buy a product that meets their needs and prefer ones that are more effective.
- Reduces development time and costs.
- Makes products more accessible
- · Reduces human errors and makes products safer.

Example 2: VRU Targets for testing

Euro NCAP Adult and Child Pedestrian Targets

VRUs in Reality

Vehicles will encounter very different VRU behaviours, shapes and sizes in different environmental conditions.

TC tested 4 target configurations:

- Child Euro NCAP pedestrian target (EPTc)
- 2. EPTc with hat and long pink coat
- 3. EPTc with long dark coat
- 4. EPTc with long dark coat and backpack

Automated Vehicle Safety Consortium

AVSC Best Practice for Interactions Between

A Program of SAE ITC

- Design for foreseeable non-compliant and less predictable behaviors by VRUs (e.g., children).
- Test for variations in shape, color, density, texture, lighting variation, environmental conditions, etc.
- VRUs should expect an ADS to follow traffic code.
- Compliance with traffic code may vary among VRU types and they may behave differently by location.
- Distracted VRUs may have different behaviors or be more likely to disobey traffic rules.
- The kinematics of certain VRUs allow them to change direction very quickly.
- Humans can change their trajectory with no external indications.

Example 3 – Branding and Marketing of ADAS

Perception	Assistance	Driving
• Safety Sense 2.0	Driver Assist	Super Cruise
 Active Safe 	Driver Assistance	Ultra Cruise
• Smart Sense	• Pilot Assist	 Autopilot
 Eyesight 	Active Driving	Drive Pilot
• ACTIVSENSE	Assistance Pro	Full Self Driving
	 ProPILOT Assist 	Blue Cruise
	Driver Assistance Plus	• Co-Pilot 360
		Drive Wise
		Driver Confidence

- Lack of standard names
- Misleading and inaccurate system names are common
- Interfaces and ADAS capabilities vary as much as the names

Key Messages

- The neglect of human factors is already an issue and risks will increase with automation.
- Human-centred design for automation is a win-win requirement.
- VRUs do not all look and act the same.
- There is a need to promote better:
 - Human-centered design of the vehicle and its interfaces;
 - safe interaction between the automated vehicle (AV) and other road users; and
 - consumer awareness and understanding of AVs including accurate depiction of the capabilities