

Belgian Road Research Centre Together for sustainable roads

Informal document GRBP-76-26 Agenda item 6

Uncertainty on the EU Tyre (Noise) Label

Luc Goubert, Belgian Road Research Centre

76th meeting of GRBP - UNECE

Rolling resistance (A to E) - External Noise (A to C) -

Geneva, Palais des Nations, 5-7 September 2022

Correlation between the tyre noise label and real life...

Belgian Road Research Centre

Hammer, E. and Bühlmann, E. (2018): The noise reduction potential of "silent tyres" on common road surfaces, Proceedings of Euronoise 2018, Crete

What is going wrong and how to fix it?

- CEDR-project: STrengthening the Effect of quieter tyres on European Roads (STEER)
- I December 2019 31 December 2021
- Consortium:
 - Grolimund & Partner (CH, coordinator)
 - VTI (S)
 - BRRC (B)
 - Sintef (N)
 - Nokian Tyres (SF)

Regulation No 117 of the Economic Commission for Europe of the United Nations (UNECE)

Regulation No 117 of the Economic Commission for Europe of the United Nations (UNECE)

Regulation No 117 (UNECE):

- Controlled Coast Bymethod
- (smooth) ISO 10844 test track
- Test vehicle equipped with 4 tyres to be tested
- Two sided measurements
- At least 16 runs

Uncertainty analysis

- 41 "sources of uncertainty" identified in whole procedure, classified in 8 categories
- Analysis complying with GUM*

Category name	Category #
Equipment	1
Experimental set up	2
Measurement conditions	3
Measurement	4
Test vehicle	5
Test track	6
Test tyres	7
Calculation	8

*ISO/IEC Guide 98-3:2008 (E) Uncertainty of measurement Part 3: Guide to the expression of uncertainty in measurement (GUM: 1995) Belgian Road Research Centre 76th Meeting of GRBP – Geneva 5-7 September 2022 6

Uncertainty contribution from the test track

- ETRTO¹: 0,92 dB
- M+P: "old" RRT of 2005²: max-min difference about 4 dB
- Recent Swiss study³: 1,3 dB
- Expert vision within consortium: about 1 dB

 ¹ETRTO, 2019. Tyre noise uncertainties in UN Regulation No. 117, Presentation at 2nd Meeting of GRBP Task Force MU, Brussels, 28-29 November 2019.
 ²Van Blokland, G., Peeters, B., 2006. Comparison of surface properties of ISO 10844 test tracks.
 ³Bühlmann, E., Schlatter, F., Sandberg, U., 2021.
 Temperature influence on tire/road noise measurements: Recently collected data and discussion of various issues related to standard testing procedures.
 Proc. INTER-NOISE 2021 - 2021 Int. Congr. Expo. Noise Control Eng. https://doi.org/10.3397/IN-2021-1830

Uncertainty contribution from the test tyres

Sample to sample variations: 0,26 dB¹ up to 0,42 dB²
"Tyre family" effect: 0,59 dB up to 1,1 dB³

¹ETRTO, 2019. Tyre noise uncertainties in UN Regulation No. 117,
 Presentation at 2nd Meeting of GRBP Task Force MU, Brussels, 28-29 November 2019.
 ²STEER analysis from the data base from a tyre manufacturer
 ³Swedish-Polish study carried out in the margin of STEER project (see § 4.2.5 of STEER Final Report)

Uncertainty contribution from the test vehicle

- ETRTO¹: 0,51 dB
- STEER analysis²: 0,60 dB

¹ETRTO, 2019. Tyre noise uncertainties in UN Regulation No. 117, Presentation at 2nd Meeting of GRBP Task Force MU, Brussels, 28-29 November 2019. ²extracted from the data base from a tyre manufacturer

Uncertainty contribution from the measurement conditions

 Main uncertainty contribution is from the temperature correction: 0,59 dB¹

¹ § 3.3.7 of STEER Final Report

Uncertainty analysis: results

Improving the test track: calibration?

Suggested procedure:

- Periodical (e.g. annual) calibration of the ISO test tracks
- CPB measurements with a vehicle equipped with SRTT tyres
- Determination of overall deviation from virtual ISO test track
- Application of corrections for all measurements done on this test track
- Uncertainty contribution will be reduced from 0,91 1,3 dB down to 0,55 dB

Reducing the uncertainty contribution from the test tyres

Suggested measures:

- Measuring all tyre types on test track = unrealistic
- Recommendation: additional "quick" measurements on drum for all tyre family members
- Uncertainty contribution would go down from 0,64
 1,18 dB to 0,26 dB

And further...

Measurement conditions:

 Updating temperature correction to the state of the art: uncertainty contribution would go down from 0,64 – 1,18 dB to 0,26 dB

Test vehicle:

 Narrower specifications for the test vehicle would reduce contribution from 0,55 dB – 0,63 dB to 0,50 dB

Uncertainty analysis: projected results after STEER recommendations

Simulated effect on correlations (10 dB span)

Before recommended measures

After recommended measures

Belgian Road Research Centre

Thank you!

Luc Goubert

Senior research scientist Belgian Road Research Centre

- **T** 0474/508356
- E <u>l.goubert@brrc.be</u>
- W www.brrc.be