Transparency and UNECE Metadata Standards

Dan Gillman

US Bureau of Labor Statistics
Office of Survey Methods Research
Modern Stats World Workshop
June 27, 2022
Outline

- Transparency panel report
- Conditions for transparency
 - Metadata schemas and instances
 - Conformance
 - Metadata quality
 - Usability
CNSTAT Panel on Transparency and Reproducibility in Federal Statistics

- Panel approved April 2019
- Sponsor agency: NSF/NCSES
- 15 panel members
 - US statistical agencies
 - Including Dan Gillman (US BLS)
 - International agencies
 - Including David Barraclough (OECD)
 - Academia, Archives, Consultants
Work of the Panel

- Periodic 2-day meetings
 - Day 1 – fact-finding with invited speakers
 - Day 2 – internal deliberations

- Covid interfered with schedule
 - No face-to-face meetings after February 2020
 - Drafting complete document was slowed

- 10-member review panel
 - Produced many comments
 - Comment resolution was time-consuming
Report

- Official Title of Report
 Transparency in Statistical Information for the National Center for Science and Engineering Statistics and All Federal Statistical Agencies

- Report issued November 2021
- Focus on transparency
- Divided into
 - Summary
 - 7 Chapters + 2 (substantive) Appendices

Relevance to MSW Standards

- Chapter 5 – Metadata and Standards
 - Detailed description of metadata
 - Return on Investment
 - for metadata management and systems
 - Rationale for adopting standards
 - Includes argument for joining UNECE efforts

- Co-authored by:
 - David Barraclough, Dan Gillman
Relevance to MSW Standards

Appendix A –

- Statistical Metadata Standards – in detail
- Description of UNECE, DDI, and SDMX standards
 - UNECE: GSBPM, GSIM, CSPA, CSDA
 - DDI: Codebook, Lifecycle, CDI, SDTL, XKOS, others
 - SDMX: SDMX, VTL
 - Other standards: DCMI, DCAT, PROV, ISO 19115, others

Co-authored by:

- David Barraclough, Dan Gillman, Michael Lenard, Andrea Thomer
How to Read the Report

- The report is long - 178 pages
 - From TOC to end of Appendix B
- For quicker and less technical read
 - Summary, Chapters 1 and 7
- All recommendations & conclusions in Summary
- Each chapter has its own recommendations
 - More contextualized, better understanding
Decisions

■ Provide recommendations in each chapter
 ▶ Devote chapter 6 to specifics for NCSES

■ Definition of transparency:
 provision of sufficiently detailed documentation of all the processes of producing official estimates

■ Focus on documentation -> need for metadata

■ Reduce emphasis on reproducibility
 ▶ Transparency is a pre-condition
Documentation

- Needed to find, understand, and use
 - Data
 - Methodologies
 - Processes (designs, algorithms, code)

- Documentation and Metadata
 - Generally, synonymous
 - Often
 - Documentation refers to textual explanations
 - Metadata is a more formalized way of explaining
Documentation

- Formal metadata conundrum
 - Textual descriptions “tell a story”
 - Formal metadata attempts the same thing
 - The information obtained from metadata
 - Must be at least as informative as text
 - Organized metadata can do more
 - E.g., comparability over time and studies
 - Hard to subdivide each kind of description
 - Consider descriptions for variables versus for rationales
Metadata

- In the formal case, metadata
 - Set of descriptors for a kind of objects
 - E.g., variables, questions

- What descriptors needed for variables?
 - Example
 - Name
 - Universe
 - Allowed values
 - Datatype
 - Related data sets
 - Related concept
Metadata

What descriptors needed for questions?

Example

- Name
- Universe
- Response choices

Question text
Previous question(s)
Following question(s)
Metadata Schema

■ Set of descriptors = Schema
■ Each descriptor = schema element
■ Schema formalized by
 ▶ Specific rules for
 – Element values (formats, etc.)
 – Relationships among elements
 – Optionality / Cardinality for elements or relationships

■ Schema = kind of technical specification
Schema Instance

- Set of values corresponding to schema elements
 - Called a schema instance
 - Example of variable schema instance
 - Name: marital_status
 - Universe: adults
 - Allowed values: <S, single>, <M, married>
 - Datatype: nominal
 - Related datasets: CPS, NLS, CE, ACS, SIPP, others
 - Related concept: “legal marital state”
Schema Instance

Example of question schema instance

- Name: marital_status
- Universe: adults
- Response choices: Single, Married
- Question text: What is your current marital status?
- Previous question(s): ?
- Subsequent question(s): Were you married previously?
Transparency

- Transparency depends on documentation
 - Could be provided as formal metadata

- What makes a variable or question transparent?
 - Have necessary metadata to support required needs
 - Necessary metadata expressed through
 - Kind of object: Schema
 - Specific object: Instance of the schema

- Schema instance = metadata for an object
Conformance

- Question –
 - How do we know an instance follows the rules?
- Schema is a technical (formal) specification
 - Contains requirements and other conditions
- Conformance to a technical specification
 - Satisfy all requirements
- An instance conforms to a schema
 - If the instance satisfies all requirements in schema
Conformance

- This does not say the values are correct
 - Only that they follow formatting rules
- This does not say the elements are effective
 - Schema might have missing elements
 - Schema might have irrelevant elements
- Conformance is only about requirements
 - Found in the technical specification
Transparency

- Necessary condition for transparency
 - Conformance to a schema
- Is this enough? Is this sufficient?
- No. Why?
- How good are the metadata?
 - They can follow all the requirements
 - But do they describe an object of interest well?
Metadata Quality

- Do instance values follow formatting rules?
 - **Syntax**
 - Formats, obligations, cardinality, relationships

- Are all instance values true?
 - **Semantic**
 - Formal truth theory
 - Follow Tarski’s notion of truth in a formal theory
Metadata Quality

- Semantics continued
 - Formal statement “variable name is marital status”
 - Is true, if and only if
 - The name of the variable is “marital status”

- Now, consider all schema element / instance values
- Does combination tell the right story?
 - Pragmatics
 - Schema elements might be missing / irrelevant
Metadata Quality

- Operationalizing this – in 4 steps
 - #1 Conformance - syntax
 - Instances must conform to a schema
 - # 2 Truth - semantics
 - Is each schema / instance value combination true?
 - For example, for variables
 - Is the name of a variable the right one?
 - Is the assigned datatype appropriate?
Metadata Quality

#3 The whole truth - pragmatics
- Is the story incomplete?
- Does the schema need more elements?
- Is there some necessary information left out of the schema?

#4 Nothing but the truth - pragmatics
- Is the story confusing?
- Does the schema include misleading elements?
 - For variables, don’t include
 - Unnecessary: Number of letters in name of variable
 - Irrelevant: Current population of United States
Transparency

- Another necessary condition for transparency
 - Metadata quality

- Are there more conditions?
 - Yes.

- How good is the user/system interface?
 - Can the user get the system to return desired information?
 - Usability
Usability

- Usability:
 - the quality of users' experiences when interacting with systems

- 2 main usability concerns for transparency:
 - Interface design
 - Can the user make sense of what’s on the screen?
 - Available functions
 - Are required functions available through the interface
Usability

User interface

- Usual usability concerns:
 - Colors
 - Button placement and function
 - Clearly stated instructions

Functions: Discovery and Understanding

- Require metadata and schemas
- Both input and output
- Metadata must conform to schemas
 - Discovery input metadata
 - Understanding output metadata
Conclusion

- Transparency requires
 - Metadata
 - Schemas
 - Conformance to the schema
 - Metadata quality
 - Usable system interface

- Claim
 - These requirements are sufficient
Any questions?
Contact Information

Dan Gillman
Office of Survey Methods Research
www.bls.gov/osmr
(w) 202-691-7523
(c) 410-624-9582
Gillman.Daniel@bls.gov
Usability

Discovery

- Open world assumption
 - Can't find an object just means you couldn’t find it
 - Possible search criteria are not known in advance

- Closed world assumption
 - Every object can be found through search
 - All search criteria are known in advance

- Use of controlled vocabularies,
 - Not user defined keywords
 - Provides exact set of values in metadata instances