Modeling Wood Fuel Production

Update to the Team of Specialists on Forest Product and Wood Energy Statistics 28 April 2022

Problem Statement

Why FAO? FAO is the custodian of a data series on wood fuel production that dates back to 1961. The data are reported by countries to FAO and our partners through the Joint Forest Products Questionnaire (JFSQ) and provided publicly via the FAOSTAT database.

Why estimate? The data series should not have gaps for countries so that totals can be estimated, for example, global production of wood fuel.

When do we need an estimate? If countries do not report data in a given year, FAO uses external information sources and/or a model to estimate wood fuel production for that year.

How will the model be implemented? There is a relatively short time window between when the country data are submitted (or not submitted) and when FAO must release an estimate for that year.

Why "now"? The model currently in use by FAO is a collection of linear and log linear equations based on work completed from approximately 1998-2002. With new information available and new statistical tools available, we would like to update the model used by FAO.

What we have*: FAOSTAT

> FAO's wood fuel data are based on figures reported by country officers.

Non-repeating official data for ≥ 10 years since 1960.

- Official data < 10 years since 1960.
- Often, these countries have a high reliance on woodfuel

to estimate
national wood
fuel production

Problem Statement

We need a method for estimating wood fuel (and wood charcoal) in the "current" year for countries that do not submit data in that year.

Step by Step

Total Human Population Conceptual Model v3.0 **Land Area Household Needs Industry Needs GDP** Heating Cooking Main Types of Industry **Total Population Total Population** Poverty **Elevation Urban Population** Type of Food Life expectancy Consumed **Temperature Metrics IRW Production** Gini coefficient **Average HH Size Urbanization Rate Impacts Electrification Rate Change in Forest Area** Availability of LPG **Change in Forest Cover Energy Demand** Price of LPG **Availability IRW Production Wood Fuel Stock Change Wood Fuel Demand Trees Outside of Forests Wood Fuel Export Wood Fuel Forest Area Wood Fuel Import** Production **Precipitation** DRAFT - PLEASE DO NOT CITE OR SHARE

Data found as of 30 June 2021

Number of countries search and number of data points found

Continent	with >10 years	of countries	which we	Countries with	data points	Countries with		Total number of additional data points
Africa	8	49	46	3	943	44	1139	2082
America	8	33	15	18	771	0	0	771
Asia	9	41	23	18	490	0	0	490
Europe	37	8	5	3	69	0	0	69
Oceania	1	14	2	12	36	0	0	36
	63	145	91	54	2309	44	1139	3448

■ Africa ■ America ■ Asia ■ Europe ■ Oceania

Energy Balance

■ Field Survey

Other

How are data distributed in time?

Conversions needed to scale up to national estimates of total production (m³) ...

MODELED

The Simple Model

1) Calculate per capita WF demand (in volume)

2) Model per capita WF demand (conceptual model)

3) Calculate national charcoal demand (in weight)

4) Model the proportion of WF demand met with charcoal.

5) Convert back to production of WF (volume) and charcoal (weight).

DRAFT PLAN – PLEASE DO NOT CITE OR SHARE

First level clustering

Time series clustering using tsclust in the package dtwclust (Sarda, Espinosa, 2019)

Second level clustering

BASE FOUND PART I -> PART IV

Found4Modeling.csv

· Widen data set: change name of Area.Code, remove excess columns, create separate columns for WF and C, fill flag columns with "DC"

UserProducerType and then with Element and then average remaining

- Filter out high values of per capita consumption
- · Create per capita consumption dividing by population from covariates.csv

FinalFoundData.csv

CHARCOAL

• Scale data up to

country, from

national, and

households to

no other data for that

full year, all

regional to

from

people

tonnes

Convert to

users in a

• Remove 25 rows (non-countries and AFREC errors)

WOODFUEL

- Scale data up to full year, all users in a country, from regional to national, and from households to
- people • Conver FAOSTAT requires prop C
- and NC

CountryxYear (new countries added!)

- Country Code added for new countries
- Associated indicators filled in for every new AFREC point

FoundData.xlsx

Some

countries

and years

COMPLETE BASE COVARIATES

FullCovariates.csv

• ImputeCovaroates.R – to be ctreated

BASE COVARIATES PART II

Covariates.csv

- Create totals for wood production and flag for total
- Fill in population data for countries missing from World Bank
- Fill in land areas for China

Create base datasets

ExampleCodeCovariates.R

- Create 5 new variables (sums or ratios)
- Go to sources as in CovariateDataDescription.do cx and bring in data
- Additional data from FAOSTAT on wood production with flag

World Bank, FAO, FRA interpolated data, Our World in Data, Stoner article

LandAreatoFill.csv

Annual 2020 10 15.csv (FRA DATA) or direct from FRA

 Merge all the country codes from all agencies to enable efficient download from non-FAO sites

Look-up

table.csv

master country year.csv

years

ΑII

countri

es and

create full timeseries.R

BASE FAO PART III -> PART V

FAOstrong.csv

- Remove extraneous country x year
- Keep only flags 1 and 2 for WF and C
- Set select 0 values to NA (if there must be production) - code in notes)
- Remove values repeated exactly 3 times in a row and replace with NA
- If Prod+Imp-Exp < 0, then Prod == NA
- Remove NAs

DRAFT PLAN - PLEASE DO NOT CITE OR **SHARE**

BASE

CLUSTER

clusters.csv

newflaggingsystem.csv

- Download data
- Remove China
- Merge coniferous and non-coniferous data and create correct flag for aggregate
- Ensure encoding is UTF-8

FAOSTAT

Some countri es and years

AFREC

Conversion

Factors for

Found Data

Updated

16AUG21.xlsx

ExampleCodeFAO1.R

"There is nothing new except what has been forgotten." ~ Marie Antoinette

Ostia Antica, Photo by Bill Richards