


## Raw material project life-cycle



#### **UNFC Mineral Specifications**

- The minerals cycle starts with the exploration and subsequent primary mineral production, such as excavation, beneficiation, processing and value-addition in a mineral project(s), as wells as site decommissioning and remediation.
- Mineral products reflect the primary entrance of raw materials into the stock available for economic value chains.



## **Downstream projects**

- Examples
  - Battery materials
  - Steel
  - Hi-tech materials
  - Fertilizers
  - Petrochemicals
  - Component manufacture
  - Consumer goods
  - Recycling

- Opportunity
  - Value-added premium products
- Challenges
  - Supply risks
  - Critical raw material management
  - Governance Transparency, conflicts, human rights (child, forced labor)
  - Technical issues
  - Social and environmental
  - Occupational safety



## Why UNFC for downstream projects?





#### Classification

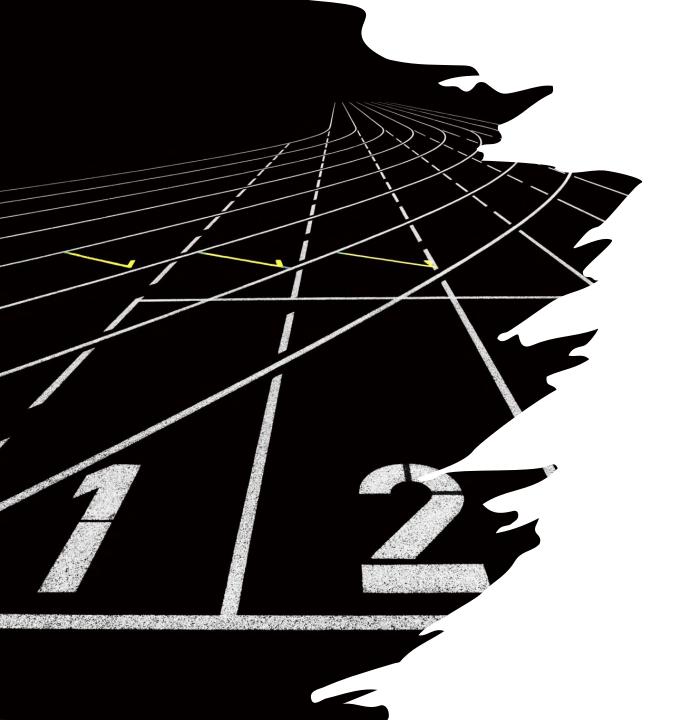
Order

Simpler information processing

Speeds up decision making

#### • UNFC

- Environmental-social-economic
- Technical feasibility
- Degree of confidence about sources
- E,F and G are important and interlinked




## **Processing methods**

- Hydrometallurgy
- Pyrometallurgy
- Reprocessing
- New technologies







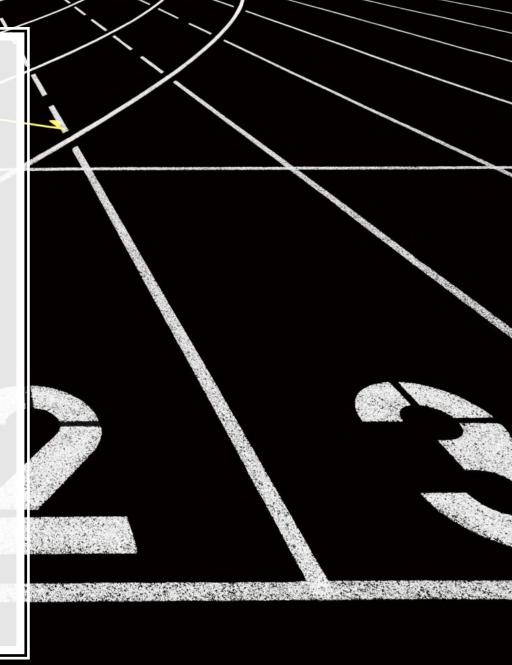
# General considerations 1/3

- Requirements
  - E axis
    - Regulatory Social and environmental
    - Legal (contracts etc.)
    - Safety
    - Residues and wastes
    - Infrastructure
  - Faxis
    - Preliminary and detailed feasibility studies Demonstration (if required)
  - G-axis
    - Sources and quantities
    - Full characterization of source materials
    - Accounting of processing losses
    - Inventories

#### **General considerations 2/3**

#### Mandatory provisions

- 1. Numerical codes
- 2. Effective date
- 3. Transparent aggregation of sourced quantities and products
- 4. Reporting basis What is reported?
- 5. Reference point
- Foreseeable future, reasonable expectations, reasonable prospects, reasonable time frame
- 7. Unprocessed quantities, losses and wastes
- 8. Basis of economic assumptions
- 9. Uniform use of SI units
- 10. Sufficient documentation


#### Preferred

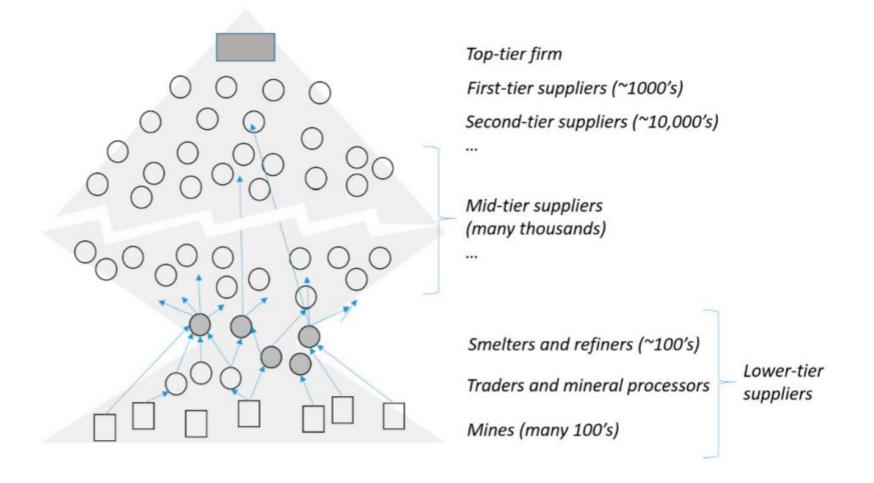
- 1. Account all information prior to effective date
- Separate estimates for each product type
- 3. Assumptions of market conditions based either on company view, qualified person view, independently published views



## General considerations 3/3

- Alternatives acceptable
  - Use of sub-classes (will allow faster decision making)
  - Quantities attributable to whole project or share of reporting entities economic interest
  - Reference point may be sale point, or an intermediate point
  - If processing technology is not confirmed, quantities with reasonable prospects may be reported
  - Early development project may be classified on the basis of maturity
  - Additional quantities (unprocessed, losses, wastes, etc.) may be reported.






## G axis -Quantities

- Measurement techniques
- Types of raw material sources
- Confidence levels low, medium or high
- Consideration for G4
- Reference point
- Co-product and By-product accounting



## G axis - Supply chain risks



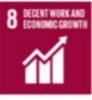


## Responsible sourcing

- Responsible sourcing, based on due diligence guidance and standards
- **EU Conflict Minerals** Regulation
- **EU Mineral Supply Due** Diligence Regulation
- OECD Due Diligence Guidance
- European Partnership for Responsible Minerals





































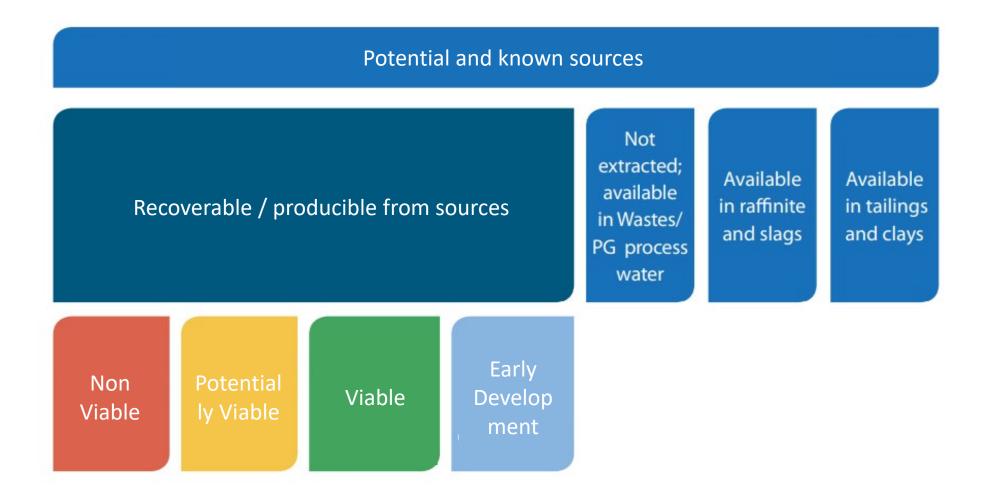



## Faxis - Project feasibility

- Processing methodology
- Recovery factors
- Technological development
- Level of maturity
- Studies
  - Pre-evaluation/Preliminary economic assessment (less than 5% of the CAPEX) by comparison with similar existing operations, more advanced projects, or using general cost curves.
  - Pre-feasibility studies (5-15% of the CAPEX) - based on more specific data
  - Feasibility studies (15-20% of the CAPEX)
    Final detailed study

- Detailed studies
  - Demonstrate the feasibility
  - Accurately and completely describe the proposed project
  - Supported by adequate test work and studies
  - Design of a processing method
  - Process equipment, infrastructure details
  - Recovery factors at all steps
  - Mitigation of undesirable environmental impacts




## E axis - Project licensing and operations

| Political stability                           |
|-----------------------------------------------|
| Appropriate regulations                       |
| A coherent and transparent licensing strategy |
| Stakeholder engagement                        |
| Tax regime                                    |
| Land use planning and legislation             |
| Complementary industrial laws                 |
| Fair resolution of any consequences           |

- Legislation framework for sustainability and environmental protection
- Water requirements
- Disposal paths of hazardous chemicals
- Disposal of slags, wastes
- Radioactive materials handling
- Human resources
- Transparency
- International regulations
- Milestones and decision gates
- Social contract
- Occupational safety
- Closure and decommissioning plans



#### **UNFC Downstream Classification**







## Thank you!

Hari Tulsidas Economic Affairs Officer

UNECE

Date 2-3 | 2 | 2022, Geneva





