About the BIC

- Non-profit NGO, founded in 1933 under auspices of the ICC
- 2100+ members in over 130 countries
- Promoting safety, security, standardization, and efficiency
- Official NGO Observer status at IMO and WCO, UN/ECOSOC
- Active at ISO, CEN and UNECE
- Based in Paris

www.bic-code.org
BIC – Data Resources

BIC Code Register
(Unique Prefix for Containers)

Global Container Database
(Technical Container Details)

BIC Facility Code
(Coded Container Facilities)
BoxTech
Global Container Database
• **Tank Container Attributes** now available in Boxtech (Capacity, IMDG, ADR/RID, Baffles) meaning tank container fleets can be added and searched for

• **Smart Container Indicator** and Certification Type to accommodate use cases;
 – Identification of Smart Containers in case of LNG bunkering
 – Certification Type or Not Certified indicator to assist future regulatory changes
 – Assists the planning of pre-stowage by terminals for LNG-powered vessels
API for BIC Facility Codes and SMDG Terminal Codes
Facility Code List – Web and API

REGISTERED LOCODE: USOAKNWDA

Facility:
United Intermodal Services Inc

Address:
1195 A Middle Harbor Rd
Oakland
CA 94607
United States of America

Operator:
United Intermodal Services Inc

Human Readable

Machine Readable

www.bic-code.org
Geofencing Pilot
Geofencing Pilot Objectives

- Demonstrate the industry benefits of a single, API-accessible platform containing agreed geofencing coordinates of terminals, depots and other zones of interest in the supply chain.

- Prove the data-collection process and establish best-practices for governance and collection of Geofences.
Why Collaborate on Geofencing?

- A single, **agreed definition of each facility** regardless of which carrier or which IOT provider is being used.
- A standard method of accessing **geofencing data using a standard API**.
- **Reduction in time** to utilise library of Geofences
- **Reduces duplication** of effort.
- Strengthens the case for smart containers, leading to faster adoption.
- **Multi-regional collaboration** means a standard can be used throughout supply chain.
- Mapping zones-of-interest (e.g. specific areas within terminal, restricted zones, M&R on terminal) further supports collection and measurement of KPIs; and collecting and exchanging data for the purposes of improving efficiency, productivity and safety.
1. Facility Code Database already contains coded global locations with lat/long points.

2. Already Harmonized with Stakeholders:
 a. DCSA Members (Ocean Carriers)
 b. IANA for North America
 c. IPCSA for NoTN (Port Communities)
 d. Container Lessors
 e. Multiple Software Vendors

3. Neutral Repository – already accessible by API
1. Governance and geofence ground rules for facility polygons
2. New functionality for the facility code API
 a. Storage of geofence against the appropriate BIC/SMDG Facility Code
 b. Retrieval of the geofence for a given BIC/SMDG Facility Code
 c. Query if GPS is within a geofence and which one
3. A visualization depending upon the data of events taking place ‘real time’ for historical data points.
collaborative approach, contribute and review
Geofence Pilot – SMDG Example Rotterdam
Geofencing Pilot
Next Steps?

- Defining the user stories, and ground rules for geofencing container facilities
- Evaluate the data-collection process and establish best-practices for governance and collection of Geofences
- Setup a review group to review Geofence contributions, maintain quality and alignment
- Providing access to Geofences against the BFC via the API for a live pilot
Start using the API today

Details to access to the API are available at:
https://www.bic-code.org/bic-facility-codes
Questions:

Douglas Owen
dow@bic-code.org

David Roff
david@cif-consulting.co.uk