March 2022

Drive action through Data

IMEO – International Methane Emissions Observatory

IMEO interconnects better data with action on transparency, science, and implementation

Raise awareness and increase the capacity of governments to pursue science based-policy options to manage methane emissions.

TROPOMI XCH4 and Oil/gas emissions in eastern Mexico

Shen et al. 2021

Shen et al. 2021

Norway Offshore O&G production

Foulds et al. 2022 preprint

Norway Offshore O&G Methane Emissions

Foulds et al 2022 preprint

Methane emissions Surat Basin, New South Wales, Australia

Neininger et al. 2021

Methane Emissions across O&G Basins

Neininger et al. 2021

Satellite observations quantify Permian methane emissions

TROPOMI methane data averaged from May 2018 – March 2019

Zhang et al. (2020) Science Advances. **6**: eaaz5120 ppbv 1830 1840 1850 1860 1870

TROPOMI data reveal high methane emissions from the Permian Basin

Zhang et al. (2020) Science Advances. 6: eaaz5120

Permian Basin Methane Emissions Trends

Lyon et al. 2021. Concurrent variation in oil and gas methane emissions and oil price during the COVID-19 pandemic. *Atmospheric Chemistry and. Physics* 21: 6605–6626, https://doi.org/10.5194/acp-21-6605-2021

Lauvaux et al. 2022

Why do better methane emissions data matter?

Legend
Target
Scientific study
Estimate

A lack of **empirical, verified data** on methane emissions limits action **at the scale and speed** needed to avoid the worst impact of climate change.

OGCI 2019 Annual Report; EPA Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018; Alvarez et al 2018, DOI: 10.1126/science.aar7204 (EDF Synthesis paper based on over 400 site-level measurements from 6 basins); Zhang et al 2020, DOI: 10.1126/sciadv.aaz5120 (Permian Basin assessment based on PermianMAP initiative and 2018/19 TROPOMI satellite observations).

environment programme 50 1972-2022

What is OGMP 2.0?

- Comprehensive, measurement-based reporting framework
- Global coverage and scope
 - 77 companies
 - · Upstream, midstream and downstream
 - Public, private and national oil companies
- Assets in scope represent over 50% of global oil and gas production in over 60 countries

OGMP 2.0 Partners

Snapshot of Company Membership

OGMP 2.0 Reporting Levels

Level

Venture/Asset Reporting

- Single, consolidated emissions number
- Only applicable where company has very limited information

Level 2

Emissions Category

- Emissions reported based on IOGP and Marcogaz emissions categories
- Based on generic emissions factors

Level 3

Generic Emission Source Level

- Emissions reported by detailed source type
- Based on generic emissions factors

Level 4

Specific Emission Source Level

- Emissions reported by detailed source type using specific emissions and activity factors
- Based on direct measurement or other methodologies

Level 5

Level 4 + Site Level Measurement Reconciliation

- Direct measurement methodologies at a site or facility level*, typically through sensors mounted on a mobile platform
- Reconciled with Level 4
- on a representative sample of facilities

GOLD STANDARD:

Integrates "bottom-up"
source-level reporting, with
independent "top-down"
site-level measurements for
the majority assets

How will IMEO answer the methane emissions data problem?

Data flow of the IMEO

COLLECT DATA

- OGMP companies' assets data
- Science measurements studies
- National inventories
- Satellite data

Apply Big Data, data science, and machine learning Reconcile inconsistencies and identify gaps

GENERATE FINAL PRODUCTS

- · Full methane emissions dataset
- Annual methane report
- · Direct measurement studies
- Science-based implementation support

Conclusion

Better data is urgent needed to catalyze the methane emissions reductions

 $\left(\begin{array}{c} \mathtt{2} \end{array}\right)$

Data from different sources and at different scales are crucial to accurately understand methane emissions.

3

Utilizing detection and measurement technology is critical for Monitoring, Reporting, and Verification process, but it must be connected to strategic mitigation action to successfully reduce emissions

4

IMEO will aggregate date from all these sources to develop a public dataset of methane emissions and work with stakeholders to use this data to direct targeted mitigation action.

Drive action through Data

