

Increasing Number of National Hydrogen Strategies

+ 22 countries have published their national hydrogen strategy

REPower EU – What does it mean for Hydrogen?

EU Hydrogen Strategy (July 2020)

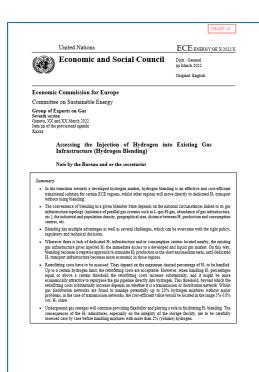
The path towards a European hydrogen eco-system step by step :

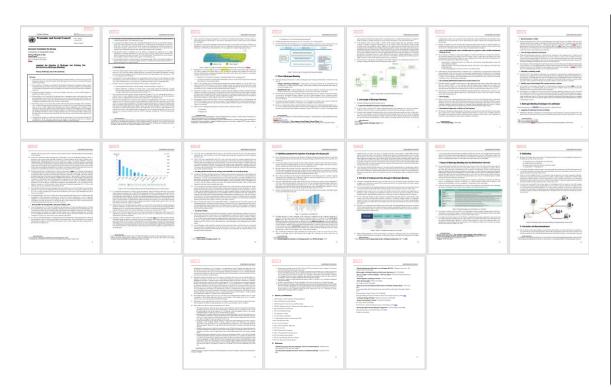
1 Mt production renewable hydrogen

6 GW renewable hydrogen electrolysers

10 Mt 40 GW renewable hydrogen deployed at a large scale

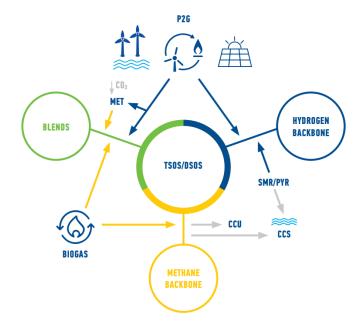
REPower EU (March 2020)


A Hydrogen Accelerator


by 2030

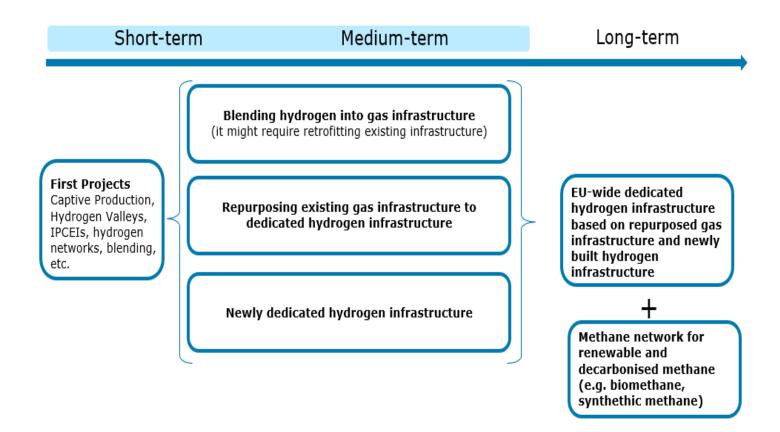
Acceleration of hydrogen infrastructure deployment (e.g. IPCEI, Partnerships, etc.) and hydrogenbased solutions New Crossborder infrastructure should be hydrogen compatible 20 Mt (10 Mt production and 10 Mt imports)

UN ECE GEG – Draft Report on H₂ Blending into Existing Gas Infra


ENTSOG Roadmap 2050

ENTSOG Roadmap 2050 identifies 3 possible, and equally important, grid configurations for achieving a carbon-neutral gas system:

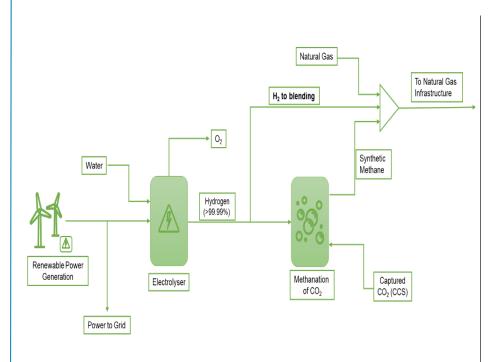
- 1. Methane (with CCUS, biomethane, synthetic methane)
- 2. Blending hydrogen and methane
- 3. Hydrogen



Source: ENTSOG Roadmap 2050 (Dec 2019)

Source: ENTSOG Roadmap 2050 (Dec 2019)

Reusing Existing Gas Infrastructure



Hydrogen Blending

	Terminology	Technology	Feedstock/ Electricity source	
PRODUCTION VIA ELECTRICITY	Green Hydrogen		Wind Solar Hydro Geothermal Tidal	
	Purple/Pink Hydrogen	Electrolysis	Nuclear	
			Mixed-origin grid energy	
PRODUCTION VIA FOSSIL FUELS	Blue Hydrogen	Natural gas reforming + CCUS Gasification + CCUS	Natural gas coal	
	Turquoise Hydrogen	Pyrolysis	Natural gas	
	Grey Hydrogen	Natural gas reforming		
	Brown Hydrogen	Gasification	Brown coal (lignite)	
	Black Hydrogen	Casincaron	Black coal	

^{*}GHG footprint given as a general guide but it is accepted that each category can be higher in some cases.

Advantages of Hydrogen Blending into Existing Gas Networks

Costs

GHG emissions reduction in all sectors

Effort Sharing among all sectors

Faster GHG Reduction

Quick H₂ Roll-out and Scale-up

Efficiency (thermal use)

De-blending

- 1. Transitional cost-efficient stepwise approach to achieve a EU-wide H₂ network
- **2. Enabling** H_2 **production** when H_2 infra or consumption centres not available
- **3. Decentralised** Flexible location for injection, not linked to clusters
- **4. Immediate access to large** transportation & storage **capacities** + integrated gas **market**
- **5. Fast and cheap GHG emissions** reductions in ST/MT for all gas consumers
- 6. Sector Coupling
- 7. Compatible and complementary with other H₂ infrastructure deployment
- 8. Lack of NIMBY: pipeline networks are available and socially accepted
- 9. Deblending

Challenges of Hydrogen Blending into Existing Gas Networks

Retrofitting Costs (over certain %)

Hydrogen embrittlement

Interoperability between gas networks (gas quality)

Hydrogen **sensitive customers**

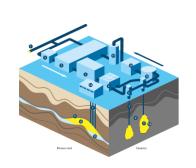
Guarantees of Origin (GOs)

Fixing the right H₂ %

Tailor-made solutions

Setting admisible H₂ values (%) at IPs + bilateral solutions

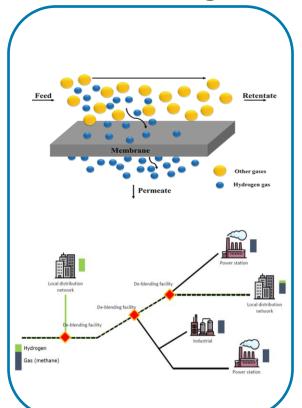
Smart & Advanced
Gas Quality handling
Solutions



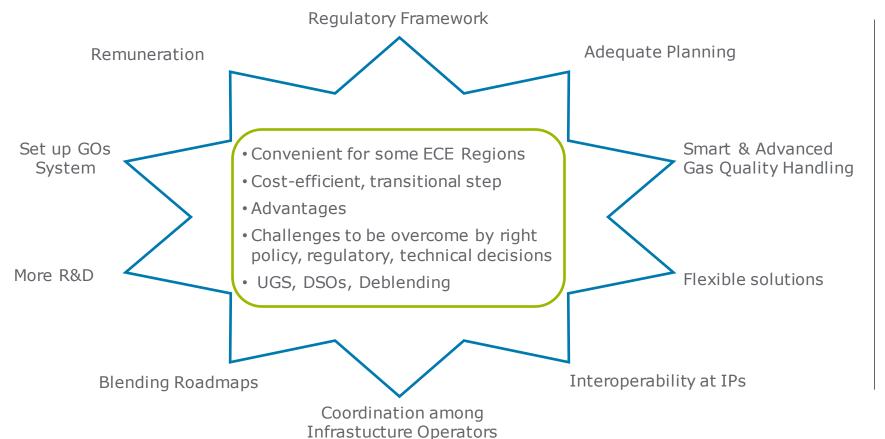
Regulatory Framework

Other elements

Underground Storage


			Salt cavern	cavern
Suitability for hydrogen	Hydrogen- methane blending (up to 10% hydrogen) proven; pure hydrogen storage under study	Under study, but learnings from depleted fields can be utilised	Proven	First hydrogen storage in development (2022)

Distribution


	Project			
	GRHYD, France, 2018-2020			
	WindGas, Germany, 2012-2016			
ling	RGC Hydrogen Project, 2020-2025			
Blending	Green Pipeline project, Portugal, 2021			
	Hydrogen Injection, Denmark, 2021			
	HyDeploy, UK, 2019-ongoing			
	THYGA, 2020-2022			

Deblending

Conclusions & Recommendations

Thanks

