Economic Commission for Europe
Inland Transport Committee
World Forum for Harmonization of Vehicle Regulations
187th session
Geneva, 21-24 June 2022
Item 2.3 of the provisional agenda
Intelligent Transport Systems and coordination of automated vehicles related activities

New Assessment/Test Method for Automated Driving (NATM) Guidelines for Validating Automated Driving System (ADS)

Submitted by the Working Party on Automated/Autonomous and Connected Vehicles*

The text reproduced below was prepared by the Informal Working Group (IWG) on Validation Methods for Automated Driving (VMAD). It is submitted to the World Forum for Harmonization of Vehicle Regulations (WP.29) for information at its June 2022 session, subject to confirmation by Working Party on Automated/Autonomous and Connected Vehicles (GRVA) at its May 2022 session.

* In accordance with the programme of work of the Inland Transport Committee for 2022 as outlined in proposed programme budget for 2022 (A/76/6 (part V sect. 20) para 20.76), the World Forum will develop, harmonize and update UN Regulations in order to enhance the performance of vehicles. The present document is submitted in conformity with that mandate.
I. Background

1. At the 178th session of the United Nations Economic Commission for Europe (UNECE)’s World Forum for Harmonization of Vehicle Regulations (WP.29), Terms of Reference (ToRs) (WP.29/1147/Annex VI) for the Informal Working Group on Validation Methods for Automated Driving (VMAD) were developed. VMAD’s mandate under these ToRs is to develop assessment methods, including scenarios, to validate the safety of automated systems based on a multi-pillar approach including audit, simulation/virtual testing, test track, and real-world testing. Throughout this document, safety encompasses the safe performance of automated driving systems and System Safety.

3. To inform this work, VMAD developed a NATM master document which outlines a conceptual framework for validating the safety of automated driving systems. The first version of this document was adopted at the 184th session (June 2021) of WP29 (ECE/TRANS/WP.29/1159). The second version was submitted to the 12th session (January 2022) of GRVA (ECE-TRANS-WP29-GRVA-2022-02e).

4. Building on this conceptual work, VMAD was instructed by WP29 (ECE/TRANS/WP.29/1159) to undertake the development of NATM guidelines that could provide direction to developers and contracting parties of the 1958 and the 1998 UN vehicle regulations agreements on recommended procedures for validating the safety of automated driving systems (ADS).

II. Purpose and scope

5. This guidelines document represents current best practices identified by the Informal Working Group on Validation Methods for Automated Driving (VMAD) for validating the safety of automated driving systems (ADS) using the NATM. These guidelines aim to provide clear direction for validating the safety of an ADS in a manner that is repeatable, objective and evidence-based, while remaining technology neutral and flexible enough to foster ongoing innovation by the automotive industry. The intended audience for these guidelines includes both developers of ADS technologies as well as contracting parties to both the 1958 and the 1998 UN vehicle regulations agreements.

6. Validating ADS safety is a highly complex task which cannot be done comprehensively nor effectively through one validation methodology alone. As a result, it is recommended to adopt a multi-pillar approach for the validation of ADS, composed of a scenarios catalogue and five validation methodologies (pillars).

 (a) Scenarios catalogue
 (b) Simulation/virtual testing,
 (c) Track testing
 (d) Real world testing
 (e) Audit/assessment
 (f) In-service monitoring and reporting

7. The following chapters of this guidance document explore each of these components of the NATM in further detail and outline a number of recommendations and consideration when using them to validate ADS safety. Further information on how the components of the NATM guidelines (i.e., the scenarios catalogue and pillars) operate together, producing an efficient, comprehensive, and cohesive process is discussed at the end of the document.
8. ADS technology is continuously evolving. Going forward, this document will be further developed and regularly updated and informed by the outcomes of future research and testing as well as through the work of WP.29 working groups.

9. In particular, updates to these guidelines will take into consideration the deliverables from the informal working group on Functional Requirements for Automated Vehicles (FRAV), which has been tasked by WP.29 to develop safety performance requirements, including measurable/verifiable criteria, to assess ADS safety.

10. Subject to direction from GRVA and WP.29, once the guidelines have reached a sufficient state of maturity it is anticipated that this document will be used to help inform the development of regulatory requirements that meet the needs of both 1958 and 1998 Agreement parties (subject to approval by WP.29).

III. Definitions

11. The introduction of ADS and related technologies has resulted in a proliferation of new terms and concepts. To ensure consistency, a glossary of terms and definitions used in the NATM guidelines are attached in Annex I. These terms, which are used throughout the document, have been italicized for reference. This glossary will be further developed and updated on an ongoing basis. Where applicable, VMAD will ensure these terms are consistent with those adopted by WP.29, GRVA, and other GRVA Informal Working Groups, including definitions agreed upon by FRAV.

IV. Applying a multi-pillar approach to the NATM

12. As previously noted, Validating ADS safety is a highly complex task which cannot be done comprehensively nor effectively through one validation methodology alone. As a result, it is recommended to adopt a multi-pillar approach for the validation of ADS, composed of a scenarios catalogue and five validation methodologies (pillars).

13. The multi-pillar approach and scenarios catalogue are described below and are explored in greater detail in subsequent sections of this document:

 (a) A scenario catalogue, consisting of descriptions of real-world driving situations that may occur during a given trip, will be a tool used by the NATM-pillars to systematically validate the safety of an ADS;

 (b) Simulation/virtual testing which uses different types of simulation toolchains to assess the compliance of an ADS with the safety requirements on a wide range of virtual scenarios including some which would be extremely difficult if not impossible to test in real-world settings. The aspect of credibility of simulation/virtual testing is included in this topic;

 (c) Track testing uses a closed-access testing ground with various scenario elements to test the capabilities and functioning of an ADS;

 (d) Real world testing uses public roads to test and evaluate the performance of ADS related to its capacity to drive in real traffic conditions;

 (e) Audit/assessment procedures which establish how manufacturers will be required to demonstrate to safety authorities using documentation, their simulation, test-track, and/or real-world testing of the capabilities of an ADS. The audit will validate that hazards and risks relevant for the system have been identified and that a consistent safety-by-design concept has been put in place. The audit will also verify that robust processes/mechanisms/strategies (i.e., safety management system) are in place to ensure the ADS meets the relevant safety requirements throughout the vehicle lifecycle. It shall also assess the complementarity between the different pillars of the assessment and the overall scenario coverage;

 (f) In-service monitoring and reporting addresses the in-service safety of the ADS after its placing on the market. It relies on the collection of fleet data in the field to assess whether the ADS continues to be safe when operated on the road. This data collection can
also be used to fuel the common scenario database with new scenarios from the field and to allow the whole ADS community to learn from major ADS accidents/incidents.

V. Scenarios catalogue

14. At this relatively early stage in the development of AVs, much of the existing literature that assesses the current state of AV development uses metrics such as miles/kilometres travelled in real-world test situations with the absence of a collision, a legal infraction, or a disengagement by the vehicle’s ADS.

15. Simple metrics such as kilometres travelled without a collision, legal infraction, or disengagement can be helpful for informing public dialogue about the general progress being made to develop AVs. Such measurements on their own, however, do not provide sufficient evidence to the international regulatory community that an AV will be able to safely navigate the vast array of different situations a vehicle could reasonably be expected to encounter.

16. Furthermore, validation through real world testing alone would be time and cost prohibitive, potentially requiring an AV to drive billions of kilometres without incident to prove that it has significantly better safety performance than a human driver. It would also not be feasible to replicate this testing later.

17. With these considerations in mind, it is recommended that a scenarios-based approach be used to systematically organize safety validation activities in an efficient, objective, repeatable, and scalable manner.

18. Scenarios based validation consists of reproducing specific real-world situations that exercise and challenge the capabilities of an ADS-equipped vehicle to operate safely.

19. Going forward, VMAD will establish a catalogue of scenarios that should be considered to validate, using the NATM pillars, the functional safety requirements established by FRAV.

A. What is a traffic scenario?

20. A scenario is a description of one or more real-world driving situations that may occur during a given trip. Scenarios can involve many elements, such as roadway layout, types of road users, objects exhibiting static or diverse dynamic behaviours, and diverse environmental conditions (among other factors).

B. Ensuring adequate scenario coverage

21. It is recommended that the scenarios-based validation methods include adequate coverage of relevant, critical, and complex scenarios to effectively validate an ADS. To note: “Coverage” refers to the degree to which a scenarios catalogue sufficiently incorporates real-world driving situations that an ADS may reasonably be expected to encounter during real-world driving in order to validate that the ADS can operate safely. Sufficient coverage is essential to a catalogues’ overall effectiveness and credibility as a validation approach.

22. When validating the safety of an ADS, it is recommended that each scenario selected to test the ADS reflects the particular conditions (e.g., road configurations, direction of traffic in a given lane, etc.) relevant to the ODD in which the ADS is designed to operate. Scenarios should be relevant to the ADS feature being validated. For example, an ADS feature intended only for highway use would not be subject to a scenario involving turns at intersections.

23. Because an ADS will need to be responsive to actions by other road users, which may make a crash unavoidable, it is recommended that scenarios not be limited to those that are deemed preventable by the ADS. Unsafe behaviours of other road users (e.g. vehicle

1 A trip is a traversal of an entire travel pathway by a vehicle from the point of origin to a destination.
travelling in the wrong direction, sudden unsignalled lane changes, and exceeding the speed limit)—if reasonably foreseeable—should be included as part of validation testing.

24. Consideration should be given to the many approaches that can be used to identify scenarios for safety validation purposes, including:
 (a) Analysing human driver behaviour, including evaluating naturalistic driving data;
 (b) Analysing collision data, such as law enforcement and insurance companies’ crash databases;
 (c) Analysing traffic patterns in specific ODD (e.g., by recording and analysing a road user behaviour at intersections);
 (d) Analysing data collected from ADS’ sensors (e.g., accelerometer, camera, radar, and global positioning systems);
 (e) Using specially configured measurement vehicle, onsite monitoring equipment, drone measurements, etc. for collecting various traffic data (including other road users);
 (f) Knowledge/experience acquired during ADS development;
 (g) Synthetically generated scenarios from key parameter variations; and
 (h) Engineered scenarios based on functional safety requirements and safety of intended functionality.

C. Classifying scenarios

25. The amount of information that is included in a scenario can be extensive. For example, the description of a scenario could contain information specifying a wide range of different actions, characteristics and elements, such as objects (e.g., vehicles, pedestrians), roadways, and environments, as well as pre-planned courses of action and major events that should occur during the scenario. Therefore, it is critical that a standardized and structured language for describing scenarios is established so that AV stakeholders understand the intention of a scenario, each other’s objectives, and the capabilities of an ADS. One tool for establishing uniform language for describing a scenario is a template, which ensures that the information to be included in the scenario is consistent and minimizes the possibility of confusion in its interpretation.

26. It is recommended that a uniform language be used to describe a scenario to ensure that the information included is consistent and minimizes the possibility of confusion in its interpretation.

27. In addition, it should be noted that some researchers have established a structured approach for categorizing and describing scenarios by different levels of abstraction according to three categories: functional, logical, and concrete scenarios. See Figure 1 below.
 (a) Functional Scenario: Scenarios with the highest level of abstraction, outlining the core concept of the scenario, such as a basic description of the ego vehicle’s actions; the interactions of the ego vehicle with other road users and objects; roadway geometry; and other elements that compose the scenario (e.g. environmental conditions etc.). This approach uses accessible language to describe the situation and its corresponding elements.

2 Traffic scenarios are derived by combining a number of relevant elements describing the scenario space systematically.
3 See Definitions section for definitions of these three categories. As technology and research keep advancing, it is expected that besides Functional, Logical and Concrete, other layer(s) could be considered that formalise the scenario description language in a human and/or machine readable format.
(b) Logical Scenario: Building off the elements identified within the functional scenario, developers generate a logical scenario by selecting value ranges or probability distributions for each element within a scenario (e.g., the possible width of a lane in meters). The logical scenario description covers all elements and technical requirements necessary to implement a system that solves these scenarios.

(c) Concrete Scenarios: Concrete scenarios are established by selecting specific values for each element. This step ensures that a specific test scenario is reproducible. In addition, for each logical scenario with continuous ranges, any number of concrete scenarios can be developed, helping to ensure a vehicle is exposed to a wide variety of situations.
Figure 1
Examples of a scenario using functional, logical and concrete categorizations (Pegasus, 2018).

<table>
<thead>
<tr>
<th>Functional scenarios</th>
<th>Logical scenarios</th>
<th>Concrete scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base road network:</td>
<td>Base road network:</td>
<td>Base road network:</td>
</tr>
<tr>
<td>three-lane motorway in a curve, 100 km/h speed limit indicated by traffic signs</td>
<td>Lane width [2.3...3.5] m</td>
<td>Lane width [3.2] m</td>
</tr>
<tr>
<td>Stationary objects:</td>
<td>Curve radius [0.6...0.9] km</td>
<td>Curve radius [0.7] km</td>
</tr>
<tr>
<td>Moveable objects:</td>
<td>Position traffic sign [0.200] m</td>
<td>Position traffic sign [150] m</td>
</tr>
<tr>
<td>Ego vehicle, traffic jam; Interaction: Ego in maneuver „approaching“ on the middle lane, traffic jam moves slowly</td>
<td>Stationary objects:</td>
<td>Stationary objects:</td>
</tr>
<tr>
<td>Environment:</td>
<td>Moveable objects:</td>
<td>Moveable objects:</td>
</tr>
<tr>
<td>Summer, rain</td>
<td>End of traffic jam [10...200] m</td>
<td>End of traffic jam 40 m</td>
</tr>
<tr>
<td></td>
<td>Traffic jam speed [0...30] km/h</td>
<td>Traffic jam speed 30 km/h</td>
</tr>
<tr>
<td></td>
<td>Ego distance [50...300] m</td>
<td>Ego distance 200 m</td>
</tr>
<tr>
<td></td>
<td>Ego speed [80...130] km/h</td>
<td>Ego speed 100 km/h</td>
</tr>
<tr>
<td></td>
<td>Environment: Temperature [10...40] °C</td>
<td>Temperature 20 °C</td>
</tr>
<tr>
<td></td>
<td>Droplet size [20...100] μm</td>
<td>Droplet size 30 μm</td>
</tr>
</tbody>
</table>

28. To provide some illustrative examples, VMAD has prepared a series of functional scenarios for a divided highway application, which are described in Annex II. As previously mentioned, this guidance document should be regarded as an “evergreen document”. As such, this annex will be updated based on ongoing discussions by VMAD and other WP.29 working groups. It is anticipated that future iterations of Annex II will also incorporate scenarios with lower levels of abstraction (e.g. logical scenarios and potential approaches for describing them). As previously noted, VMAD will also continue to examine the development of a more comprehensive scenarios catalogue as part of the NATM.

D. Scenario usage

29. The use of scenarios can be applied to different testing methodologies, such as virtual/simulation, test track, and real-world testing. Together, these methodologies provide a multifaceted testing architecture, with each methodology possessing specific strengths and weaknesses. Therefore, some scenarios may be more appropriately tested using certain test methodologies over others.

30. It is recommended that random sampling among scenarios relevant to a particular ADS and its ODD be considered in order to avoid overfitting. Although more cases of random sampling are preferable from a credibility perspective, it is recognized that this can place a greater burden on manufacturers and the relevant authority (e.g. technical service). This should be considered when determining the volume of tests conducted using random sampling.

VI. Simulation/virtual testing – Pillar 1

A. Types of simulation toolchain approaches

31. The simulation toolchain used for virtual testing may result in the combination of different approaches. In particular, there are many ways that tests can be performed:

(a) Entirely inside a computer (referred to as Model or Software in the Loop testing, MIL/SIL), with the model of the elements involved (e.g., a simple representation of the control logic of an ADS) interacting in a simulated environment; and/or
(b) With a sensor, a subsystem, or the whole vehicle interacting with a virtual environment (Hardware or Vehicle in the Loop testing, HIL/VIL). For VIL testing, the vehicle can either be in:

(i) A laboratory where the vehicle would be standing still or moving on a chassis dynamometer or on a powertrain test bed and is connected to the environment model by wire or by direct stimulation of its sensors; or

(ii) A proving ground where the vehicle would be connected to an environment model and would interact with virtual objects by physically moving on the test-track.

(iii) With a subsystem interacting with a real driver (Driver in the Loop testing, DIL).

(iv) Interaction between the system and the environment

32. The interaction between the system under the test and the environment can either be an open- or closed-loop.

33. Open-loop virtual tests (also referred to as software or hardware reprocessing, shadow mode, etc.) could be done through a variety of methods, such as the ADS interacting with a virtual situation collected from the real world. In this case, the virtual objects’ actions are data-driven only and the information is not self-corrected based on feedback from the output. Because the open-loop controller may vary due to external disturbances without the ADS and/or the assessor being aware, the applicability of open-loop tests in the ADS validation may be limited.

34. Closed-loop virtual tests include a feedback loop that continuously sends information from the closed-loop controller to the ADS. Within these test systems, the digital objects in the environment could react in different ways depending on the action of the system under test.

35. Selecting an open- or closed-loop test could depend on factors such as the objectives of the virtual testing activity and the status of development of the system under test. For ADS validation it is expected that mainly closed-loop virtual testing will be considered.

36. The flexibility of the pillar makes it a standard test method during a vehicle’s design and the ADS validation. For an ADS, given the impossibility to test the vehicle’s behaviour in the real world and in all possible situations as well as for any change in its driving logic, then virtual testing becomes an indispensable tool to verify the capability of the automated system to deal with a wide variety of possible traffic scenarios. In addition, virtual testing can be extremely beneficial in replacing real world and proving ground testing if there are concerns over safety-critical traffic scenarios. As a result, it is recommended that virtual testing be used to test the ADS under safety critical scenarios that would be difficult and/or unsafe to reproduce on test tracks or public roads.

37. Virtual tests used for ADS validation can achieve different objectives, depending on the overall validation strategy and the accuracy of the underlying simulation models. When assessing the safety of an ADS using virtual testing it is recommended that the following strengths and weaknesses are considered:

(a) Provide qualitative confidence in the safety of the full system.

(b) Contribute directly to statistical confidence in the safety of the full system (caveats apply).

(c) Provide qualitative or statistical confidence in the performance of specific subsystems or components.

(d) Discover challenging scenarios that can be tested in the real world (e.g. real-world tests and track tests described in chapter 7 and 8 of this document).

38. In contrast to all its potential benefits, a limitation of this approach is in its intrinsic limited fidelity. As models provide a representation of the reality, the suitability of a model to satisfactorily replace the real world for validating the safety of ADSs has to be carefully assessed. Therefore, the validation of the simulation models used in virtual testing is essential to determine the quality and reliability of the results compared to real-world performance.
39. It is recommended that a virtual test of the ADS’ performance is compared with its performance in the real world when executing the same scenario. This will provide the opportunity to assess the accuracy of a virtual testing toolchain. Given the high number of scenarios that virtual testing can perform compared to track testing, the validation will probably need to be performed on a smaller but still sufficiently representative subset of the relevant scenarios in order to substantiate any extrapolation beyond the scenarios used for the validation. More information as well as recommendations on credibility assessment for using virtual toolchains can be found in Annex III.

40. In the short-term virtual testing may only be conducted using simulation toolchains developed and maintained by the ADS manufacturer. Since their design depends on the validation and verification strategies implemented by the manufacturer, it is recommended that simulation toolchains are not being subject to regulation or standardization at this time. Rather, simulation toolchains should be explained and documented by the ADS manufacturer and its suitability assessed during the certification process. For this reason, the output of the NATM related to virtual testing ensures that documentation and data provided by the manufacturer is consistent. Furthermore, virtual testing using modelling and simulation should be credible enough for an assessor to make sound decisions. Credibility is discussed further below.

41. It is recommended that when validating the safety of the ADS, particular attention should be placed on the interaction between virtual testing and the other test methods. Virtual testing will have strong relationships with all the pillars of the NATM guidelines. In particular:

(a) Virtual testing supplements physical testing to account for the quantity and diversity of ADS configurations, intended uses and limitations on use. One of the strengths of virtual testing is its capacity to assess the ADS performance across multiple scenarios and across ranges of parameters within scenarios in a cost-effective manner. Virtual testing enables results of limited physical tests to be supplemented by verifiable data covering numerous instances of the test scenario, by varying parameters. Using this approach, virtual testing can demonstrate ADS coverage of safety-critical scenarios, and hence provide evidence that an ADS will perform as intended for that type of scenario in the real world. These advantages reduce the burden on physical tests (offsetting their weaknesses) and help to improve the efficiency of the overall assessment process across the pillars. Virtual testing can also be effectively used to identify and cover edge cases and other low-probability scenarios to increase confidence on the ADS’ likely performances.

(b) Virtual testing can play an important role in the development of performance requirements and traffic scenarios.

(c) Virtual testing enables assessment of ADS performance boundaries, enabling precision of limits between collision avoidance and crash mitigation. Through methods of randomization and scenario compositions, virtual testing enables the developer or the assessor to challenge the ADS and increase confidence in its performance when challenged with low probability events.

(d) Virtual testing will be a key element in the audit assessment. Results of virtual testing carried out both during vehicle development and in the verification and validation phase will provide valuable evidence supporting the safety audit. The manufacturers will need to provide evidence and documentation about how the virtual testing is carried out and how the underlying simulation toolchain has been validated.

(e) Real-world tests can aid in the generation of realistic simulation models and in establishing their accuracy:

(f) Virtual testing can play an important role in responding to concerns identified through in-use monitoring of ADS performance. Virtual testing provides a quick and flexible approach to analyse ADS performance based on real-world events. It allows manufacturers to understand and verify the ADS behaviour and to understand why an issue may have occurred. It may identify an untested scenario, or a set of untried parameters. It may also identify the “scale” of any issue. If the ADS does demonstrate unsafe behaviour it can help to assess modifications and ultimately to improve performance. Where appropriate, the
information and scenario descriptions can be shared and integrated rapidly into virtual testing regimes worldwide.

42. Recognizing that specific functional safety requirements are still under development, virtual testing using a validated simulation toolchain, shows particular promise for assessing the following general safety requirements currently being considered:

(a) The ADS should drive safely and manage safety critical situations. These are the requirements where virtual testing can play the most prominent role. MIL/SIL, HIL and VIL virtual testing can all be used to assess these requirements at different stages of vehicle verification and validation.

(b) The ADS should interact safely with the user. DIL virtual testing can be helpful to support the assessment of this category of safety requirement by analysing the interaction between the driver and the ADS in a safe and controlled environment.

(c) The ADS should safely manage failure modes and ADS should ensure a safe operational state. The use of virtual testing in these two categories is also very promising but would probably require further research work. SIL virtual testing could include simulated failures and maintenance requests. HIL and VIL virtual testing could be used to assess how the system would react to the occurrence of a real malfunctioning induced to the real system.

VII. Track testing – Pillar 2

43. Track testing occurs on a closed-access testing ground that uses real obstacles and obstacle surrogates (e.g., vehicle crash targets, etc.) to assess the safety requirements of an ADS (e.g., human factors, safety system). This testing approach allows for the physical vehicles to be tested through realistic scenarios to evaluate either sub-systems or the fully assembled system. These external inputs and conditions can be controlled or measured during a test.

44. Track testing is suitable for assessing the ADS capabilities in nominal scenarios and critical scenarios. The same tests can be used to verify the performance of the vehicles regarding human factors or fallback in these scenarios. However, operating on test tracks can be resource intensive. For more background information on track testing, such as its strengths and weaknesses, please review the NATM Master Document.

45. It is recommended that track testing be used to assess the performance of ADS in a number of selected important nominal and critical scenarios, notably given that, unlike real-world testing, track testing can accelerate exposure to known rare events or safety critical scenarios, and in a more controlled and safer environment.

46. It is furthermore recommended to develop the track tests in line with the approach set out in Annex VII.

A. How the pillar interacts with other pillars

47. It is recommended that information generated during the track-test be used as additional data to validate the virtual tests by comparing an ADS’ performance within a virtual test with its performance on a test track when executing the same scenario. For instance, track testing can be used as an additional tool/method to validate the quality/reliability of the virtual toolchain by comparing an ADS’ performance within a virtual test with its performance on a test track when executing the same scenarios. However, it is important to keep in mind the limitations described in the NATM Master Document.

VIII. Real-world testing – Pillar 3

48. Real-world testing uses public roads to test the capabilities and compliance with safety requirements (e.g., human factors, safety system) of a vehicle with an automated driving system (ADS) in real-world traffic. It therefore provides an opportunity to validate the safety
of the ADS within its true operating environment. For more background information on real world testing, such as its strengths and weaknesses, please review the NATM Master Document.

49. It is recommended that real world testing be considered for assessing aspects of the ADS performance related to its capability to drive in real traffic conditions, e.g. smooth driving, capability to deal with dense traffic, interaction with other road users, maintaining flow of traffic, being considerate and courteous to other vehicles.

50. Real world testing should also be considered for assessing aspects of the ADS performance at some ODD boundaries (nominal and complex scenarios), i.e. is the system triggering transition demands to the driver when it is supposed to (e.g. end of the ODD, weather conditions). The same testing could be used to confirm the performances related to human factors under these conditions.

51. Furthermore, it is recommended that on road testing be considered for detecting issues that may not be well captured by track tests and simulation, such as perception quality limitation (e.g. due to light conditions, rain, etc.).

52. Finally, it is recommended to develop real-world tests in line with the approach set out in Annex VII.

53. Although it may not be possible to encounter all traffic scenarios during a real-world test, the likelihood of covering specific complex scenarios could be increased by selecting a specific type of ODD (e.g., highway) and examining when and where specific elements (e.g., high- or low-density traffic) typically occur.

54. Specific infractions identified during real-world testing may be reviewed and/or assessed by evaluating the data gathered during the original test and any data gathered during additional virtual, track and real-world testing.

A. How the pillar interacts with other pillars

55. Data generated during real-world testing may be used as additional data to validate whether portions of a virtual and/or track-testing environment were modelled properly by comparing an ADS’ performance within a simulation and track test with its performance in a real-world environment when executing the same test scenario.

56. It can also be used to support the development of new traffic scenarios for track and virtual testing, allowing for the identification of edge cases and other unanticipated hazardous situations that could challenge the ADS.

57. The information gathered from real world testing may also support improvements in the hazard and risk analysis and design of the ADS systems.

IX. Audit – Pillar 4

58. The purpose of the audit pillar is to assess/demonstrate that the:

(a) Manufacturer has the right processes to ensure operational and functional safety during the vehicle lifecycle, and

(b) Vehicle design is safe by design and this design is sufficiently validated before market introduction.

58 bis. Therefore, this pillar is composed of two main components: one is the audit of the manufacturer processes established through a safety management system, and the other one consists in the safety assessment of the ADS design.

59. It is recommended that the manufacturer is required to demonstrate that:

(a) Robust processes are in place to ensure safety throughout the vehicle lifecycle (development phase, production, but also operation on the road and decommissioning). This
shall include taking the right measures to monitor the vehicle in the field and to take the right action when necessary;

(b) Hazard and risks relevant for the system have been identified and a consistent safety-by-design concept has been put in place to mitigate these risks; and

(c) The risk assessment and the safety-by-design concept have been validated through testing by the manufacturer to show that the vehicle meets the safety requirements before it is placed in the market. The vehicle should be free of unreasonable safety risks to the broader transport ecosystem, in particular, the driver, passengers and other road users.

60. On the basis of the evidence provided by the manufacturer and the targeted tests, authorities will be able to audit and assess whether the processes, the risk assessment, the design and the validation of the manufacturer are robust enough with regard functional and operational safety.

A. General guidance on the audit of the manufacturer safety management system

61. The purpose of the audit of the manufacturer’s safety management system is to demonstrate that the manufacturer has robust processes to manage safety risks and to ensure safety throughout the ADS lifecycle (development phase, production, but also operation on the road and decommissioning). It should include taking the right measures to monitor the vehicle in the field and to take the right action when necessary.

62. The documentation provided by a manufacturer should demonstrate that their safety management system provides effective processes, methodologies and tools, is up to date, and is being followed within the organization to manage safety and continued compliance throughout the product lifecycle (design, development, production, operation including respect of traffic rules, and decommissioning).

1. Safety Management System

63. The control of risks should be achieved by addressing 3 critical dimensions:

(a) Human component thanks to people with appropriate skills, training, and motivation,

(b) Organisational component consisting of procedures and methods defining the relationship of tasks and

(c) Technical component by using appropriate tools and equipment.

63 bis. The establishment of an adequate Safety Management System (SMS) serves to monitor and improve all three dimensions and control relevant risks. The SMS evaluation is based on automotive engineering standards, guidebooks, and best practice documents relevant to safety.

63 ter. It is recommended that the product operational risks should be specifically addressed in the Design and Development processes and implemented in in the safety assessment of the ADS. Thus, the ADS manufacturer should show the link between the overall risk management process (as per this point) and product operational risks.

64. Examples of processes and aspects that are recommended to be documented by the manufacturer:

(a) Risk Management:

(i) Risk identification (in line with ISO 3100 6.4.2 or equivalent standard)

(ii) Risk analysis (in line with ISO 3100 6.4.3 or equivalent standard)

(iii) Risk evaluation (in line with ISO 3100 6.4.4 or equivalent standard)

(iv) Risk treatment (in line with ISO 3100 6.4.5 or equivalent standard), including

(v) Processes used for keeping the risk assessments as current as possible
(vi) Safety performance of the organization and effectiveness of safety risk controls.

65. Examples of processes and aspects that are recommended to be documented by the manufacturer:

 (a) Safety governance
 (i) Safety policies and principles (in line with the concept stated in ISO 21434, para. 5.4.1 and ISO 9001 Automotive 5.2, but from safety perspective)
 (ii) Management commitment (in line with the concept stated in ISO 21434, para. 5.4.1 and ISO 9001 Automotive 5.1, but from safety perspective)
 (iii) Roles and responsibilities (ISO 26262-2, para. 6.4.2, this relates to the organizational as well as to the project dependent activities)
 (b) Safety culture (ISO 26262-2, para. 5.4.2)
 (c) Effective communications within the organization (ISO 26262-2, para. 5.4.2.3)
 (d) Information sharing outside of the organization (in line with the concept stated in ISO 21434, para. 5.4.5 and ISO 9001, but from safety perspective)
 (e) Quality management system (e.g., as per IATF 16949 or ISO 9001 or equivalent) to support safety engineering, including change management, configuration management, requirement management, tool management etc.

66. It is recommended that the design and development process is established and documented including risk management, requirements management, requirements’ implementation, testing, failure tracking, remedy, and release.

67. Examples of processes and aspects that are recommended to be documented to ensure the robustness of the design and development phase:

 (a) A general description of the way in which the organization performs all the design and development activities
 (b) Vehicle\system development, integration and implementation.
 (i) Requirements management (e.g. Requirement capture and validation)
 (ii) Validation strategies, including but not limited to
 a. Credibility assessment for virtual tool chain
 b. System Integration level
 c. Software level
 d. Hardware level
 (iii) Management of functional Safety and operational safety, including the continuing evaluation and update of risk assessments and relationship with In-Service Safety
 (c) Management of design changes and changes to design and development processes

68. It is recommended that the manufacturer institute and maintain effective communication channels between manufacturer departments responsible for functional/operational safety, cybersecurity and any other relevant disciplines related to the achievement of vehicle safety.

69. Examples of processes and aspects that should be considered to assure that responsibilities are properly discharged:

 (a) Roles and responsibilities during the design and development
 (b) Qualifications and experience of persons responsible for making decisions affecting safety
(c) Coordination between design and production

70. Examples of processes and aspects that are recommended to be documented to ensure the robustness of the production phase include:

(a) Quality Management System accreditation (e.g., as per IATF 16949 or ISO 9001 or equivalent)

(b) A general description of the way in which the organisation performs all the production functions including management of working conditions and the environment and equipment and tools.

71. Examples of processes and aspects to be documented to assure robustness of distributed production:

(a) Liaison between the vehicle manufacturer and all other organisations (partners or subcontractors) involved in the production of the system/vehicle

(b) Criteria for the acceptability of “subsystem/components” manufactured by other partners or subcontractors. (i.e., deployment of production assurance requirements to supply chain)

72. It is recommended that the manufacturer demonstrate that periodic independent internal audits and external audit are carried out to ensure that the processes established for the Safety Management System are implemented consistently. (UN R157, para. 3.5.5, ISO 26262-2, para. 6.4.11)

73. The following are examples of processes and aspects that should be documented to assure independent design audit and assessment:

(a) Assurance that all practices and procedure to be applied during the vehicle/system development are followed. (process assurance)

(b) Assurance an independent checking for the compliance with the applicable requirements and regulations. (Independent assessment from person not creating the compliance data)

(c) Process to assure the continuing evaluation of the Safety management system in order to ensure that it remains effective. (system audit that can be undertaken by the existing Quality Management System)

74. It is recommended that manufacturers put in place suitable arrangements (e.g. contractual arrangements, clear interfaces, quality management system) with suppliers to ensure that the supplier safety management system complies with the requirements of guidance except for vehicle related aspects like “operation” and “decommissioning”

75. Examples of processes and aspects that are recommended to be documented:

(a) Organizational policy for supply chain

(b) Incorporation of risks originating from supply chain

(c) Evaluation of supplier SMS capability and corresponding audits

(d) Processes to establish contracts, agreements for ensuring safety across the phases of development, production and postproduction

(e) Processes for distributed safety activities.

76. It is recommended that manufacturers have processes to monitor safety-relevant incidents/crashes/collisions caused by the engaged ADS and a process to manage potential safety-relevant gaps post-registration (closed loop of field monitoring) and to update the vehicles.

77. The manufacturer should have processes to report critical incidents (e.g. collision with another road users and potential safety-relevant gaps) to the relevant authority when critical incidents occur.
2. **Link with the in-service monitoring/reporting pillar.**

78. The manufacturers should set up process for the operational phase for confirmation of compliance with the safety requirements in the field, early detection of new unknown scenarios (in line with Safety Of the Intended Function (SOTIF) safety development goal to minimize the unknown scenarios area), event investigation, to share learnings derived from incidents and near-miss analysis to allow the whole community to learn from operational feedback and to contribute to the continuous improvement of automotive safety.

79. Example of guiding principles: Is there a document describing the appropriate procedure of reporting incidents to the management? Is there evidence that the company is complying with that procedure? Is there a document describing the appropriate procedure of investigation and documentation of incidents? Is there evidence that the company is complying with that procedure?

3. **Expiration/renewal of the SMS**

80. It is recommended that documentation be regularly updated in line with any relevant changes to the SMS processes. Any changes to SMS documentation should be communicated as required to the relevant authority.

B. **General guidance on the safety assessment of the ADS design**

81. The purpose of the audit of the safety by design concept of the ADS is to demonstrate that hazards and risks relevant for the ADS have been identified by the manufacturer and a consistent safety-by-design concept has been put in place to mitigate these risks. In addition, it should demonstrate that the risk assessment and the safety-by-design concept have been validated by the manufacturer through testing; demonstrating before the vehicle is placed on the market that it meets the relevant safety requirements and, in particular, is free of unreasonable safety risks to the broader transport ecosystem. In particular, the driver, passengers and other road users.

1. **ADS General Description**

82. It is recommended that a description be provided, which gives a simple explanation of the operational characteristics of the ADS and ADS features:

 (a) Operational Design Domain (Speed, road type, country, Environment, Road conditions, etc)/ Boundary conditions/

 (b) Basic performance (e.g. Object and Event Detection and Response (OEDR), etc.)

 (c) Interaction with other road users

 (d) Main conditions for Minimum Risk Maneuuvres.

 (e) Interaction concept with the driver (if relevant)

 (f) Supervision centre (if relevant))

 (g) The means to activate, override or deactivate the ADS by the driver (if relevant) or the human supervision centre (if relevant), passengers (if relevant) or other road users (if relevant).

2. **Description of the functions of the ADS**

83. A description should be provided which gives a simple explanation of all the functions including control strategies of the ADS and the methods employed to perform the dynamic driving tasks within the ODD and the boundaries under which the ADS is designed to operate, including a statement of the mechanism(s) by which control is exercised.

84. It is recommended that a list of all input and sensed variables be provided and the working range of these defined, along with a description of how each variable affects system behaviour.
85. A list of all output variables which are controlled by the ADS should be provided and an explanation given, in each case, of whether the control is direct or via another vehicle system. The range of control exercised on each variable should be defined.

3. ADS layout and schematics

(a) Inventory of components

86. A list should be provided, collating all the units of the ADS and mentioning the other vehicle systems which are needed to achieve the control function in question.

87. An outline schematic showing these units in combination should be provided, with both the equipment distribution and the interconnections made clear.

88. It is recommended that the outline includes:
 (a) Perception and objects detection including mapping and positioning
 (b) Characterization of Decision-making
 (c) Remote supervision and remote monitoring by a remote supervision centre (if applicable).
 (d) Information display / user interface
 (e) The data storage system (DSSAD).

(b) Functions of the units

89. The function of each unit of "The ADS" should be outlined and the signals linking it with other units or with other vehicle systems should be shown. This may be provided by a labelled block diagram or other schematic, or by a description aided by such a diagram.

90. It is recommended that interconnections within "The ADS" should be shown by a circuit diagram for the electric transmission links, by a piping diagram for pneumatic or hydraulic transmission equipment and by a simplified diagrammatic layout for mechanical linkages. The transmission links both to and from other systems should also be shown.

91. There should be a clear correspondence between transmission links and the signals carried between Units. Priorities of signals on multiplexed data paths should be stated wherever priority may be an issue affecting performance or safety.

(c) Identification of units

92. Each unit should be clearly and unambiguously identifiable (e.g. by marking for hardware, and by marking or software output for software content) to provide corresponding hardware and documentation association. Where the software version can be changed without requiring replacement of the marking or component, the software identification must be by software output only.

93. It is recommended that where functions are combined within a single unit or indeed within a single computer, but shown in multiple blocks in the block diagram for clarity and ease of explanation, only a single hardware identification marking should be used. The manufacturer should, by the use of this identification, affirm that the equipment supplied conforms to the corresponding document.

94. The identification defines the hardware and software version and, where the latter changes such as to alter the function of the unit as far as this Regulation is concerned, this identification should also be changed.

(d) Installation of sensing system components

95. The manufacturer should provide information regarding the installation options that will be employed for the individual components that comprise the sensing system. These options should include, but are not limited to, the location of the component in/on the vehicle, the material(s) surrounding the component, the dimensioning and geometry of the material surrounding the component, and the surface finish of the materials surrounding the
component, once installed in the vehicle. The information should also include installation specifications that are critical to the ADS’s performance, e.g. tolerances on installation angle.

96. It is recommended that any changes to the individual components of the sensing system, or the installation options, be updated in the documentation.

(e) ADS specifications

(a) Description of ADS specifications in Normal and Emergency Conditions, the acceptability criteria and the demonstration of compliance with those criteria.

(b) List of applied regulations, codes, and standards

(f) Safety Concept and validation of the safety concept by the manufacturer

97. The manufacturer should provide a statement which affirms that the ”The ADS” is free from unreasonable risks for the driver (if applicable), passengers and other road users.

98. In respect of software employed in ”The ADS”, the outline architecture should be explained and the design methods and tools used should be identified. The manufacturer should show evidence of the means by which they determined the realization of the ADS logic, during the design and development process.

99. It is recommended that the manufacturer should provide an explanation of the design provisions built into ”The ADS” so as to ensure functional and operational safety. Possible design provisions in ”The ADS” are, for example:

(a) Fall-back to operation using a partial system.

(b) Redundancy with a separate system.

(c) Removal of the automated driving function(s).

100. If the chosen provision selects a partial performance mode of operation under certain fault conditions (e.g. in case of severe failures), then these conditions should be stated (e.g. type of severe failure) and the resulting limits of effectiveness defined (e.g. initiation of a minimum risk manoeuvre immediately) as well as the warning strategy to the driver/remote supervision centre (if applicable).

101. If the chosen provision selects a second (back-up) means to realize the performance of the dynamic driving task, it is recommended that the principles of the change-over mechanism, the logic and level of redundancy and any built in back-up checking features be explained and the resulting limits of back-up effectiveness defined.

102. If the chosen provision selects the removal of the automated driving function, it is recommended that this is done in compliance with the relevant provisions of this regulation. All the corresponding output control signals associated with this function should be inhibited.

103. The documentation should be supported, by an analysis which shows, in overall terms, how the ADS will behave to mitigate or avoid hazards which can have a bearing on the safety of the driver (if applicable), passengers and other road users. It should show how unknown hazardous scenarios will be managed by the manufacturer in order to keep the residual level or risk under control.

104. The chosen analytical approach(es) should be established by the manufacturer and made available to the relevant authority before market introduction.

105. The auditor should perform an assessment of the application of the analytical approach(es):

(a) Inspection of the safety approach at the concept (vehicle) level.

(b) It is recommended that this approach be based on a Hazard / Risk analysis appropriate to system safety.

(c) Inspection of the safety approach at the ADS level including a top down (from possible hazard to design) and bottom-up approach (from design to possible hazards). The safety approach may be based on a Failure Mode and Effect Analysis (FMEA), a Fault Tree
Analysis (FTA) and a System-Theoretic Process Analysis (STPA) or any similar process appropriate to system functional and operational safety.

(d) The documentation should demonstrate the validation/verification plans and results including appropriate acceptance criteria. This should include validation testing appropriate for validation, for example, Hardware in the Loop (HIL) testing, vehicle on-road operational testing, testing with real end users, or any other testing appropriate for validation/verification.

106. Results of validation and verification may be assessed by analysing coverage of the different tests and setting coverage minimal thresholds for various metrics.

107. It is recommended that the documentation confirm that at least each of the following items are covered where applicable:

(a) Issues linked to interactions with other vehicle systems (e.g. braking, steering);

(b) Failures of the automated driving system and system risk mitigation reactions;

(c) Situations within the ODD when a system may create unreasonable safety risks for the driver (if applicable), passengers and other road users due to operational disturbances (e.g. lack of or wrong comprehension of the vehicle environment, lack of understanding of the reaction from the driver (if applicable), passenger or other road users, inadequate control, challenging scenarios)

(d) Identification of the relevant scenarios within the boundary conditions and the management method used to select scenarios and validation tool chosen.

(e) Decision making process resulting in the performance of the dynamic driving tasks (e.g. emergency manoeuvres), for the interaction with other road users and in compliance with traffic rules

(f) Cyber-attacks having an impact on the safety of the vehicle.

(g) Reasonably foreseeable misuse by the driver (if applicable) (e.g. driver availability recognition system and an explanation on how the availability criteria were established), mistakes or misunderstanding by the driver if applicable (e.g. unintentional override) and intentional tampering of the ADS.

108. The documentation should establish that argumentation supporting the safety concept is understandable and logical and implemented in the different functions of the ADS.

109. The documentation should also demonstrate that validation plans are robust enough to demonstrate safety (e.g. reasonable coverage of chosen scenarios testing by the validation tool chosen) and have been completed.

110. It is recommended that the demonstrate that the vehicle is free from unreasonable risks for the driver (if applicable); vehicle occupants and other road users in the operational design domain and the method, i.e. through:

(a) An overall validation target (i.e., validation acceptance criteria) supported by validation results, demonstrating that the entry into service of the automated driving system will overall not increase the level of risk for the driver (if applicable), vehicle occupants, and other road users compared to a manually driven vehicles; and

(b) A scenario specific approach showing that the ADS will overall not increase the level of risk for the driver (if applicable), passengers and other road users compared to a manually driven vehicles for each of the safety relevant scenarios.

111. The documentation should allow the relevant authority to test and verify the safety concept.

112. It is recommended that the documentation itemize the parameters being monitored and should set out, for each failure condition of the type defined in accordance with 90.6. of this annex, the warning signal to be given to the driver (if applicable) /vehicle occupants/other road users and/or to service/technical inspection personnel.
113. This documentation should also describe the measures in place to ensure the "The ADS" is free from unreasonable risks for the driver (if applicable), vehicle occupants, and other road users when the performance of "The ADS" is affected by environmental conditions e.g. climatic, temperature, dust ingress, water ingress, ice packing.

(g) **Data Storage System**

114. It is recommended that the documentation describe:

(a) Storage location and crash survivability

(b) Data recorded during vehicle operation and occurrences

(c) Data security and protection against unauthorized access or use

(d) Means and tools to carry out authorized access to data.

(h) **Cyber security**

115. The documentation should describe:

(a) Cyber security and software update management,

(b) Identification of risks, mitigation measures,

(c) Secondary risks and assessment of residual risks,

(d) Software update procedure and management put in place to comply with legislative requirements.

(i) **Information provisions to users**

116. It is recommended that the documentation describe:

(a) Model of the information provided to users (including expected driver’s tasks within the ODD and when going out of the ODD).

(b) Extract of the relevant part of the owner’s manual

(j) **Safety management system**

117. The manufacturer should have a valid Safety Management System relevant to the ADS concerned and should inform of any change that will affect the relevance of the safety management system for the ADS concerned.

(k) **Type of documentation to be provided**

118. The manufacturer should provide a documentation package which gives access to the basic design of "ADS" and the means by which it is linked to other vehicle systems or by which it directly controls output variables.

119. The function(s) of "ADS", including the control strategies, and the safety concept, as laid down by the manufacturer, should be explained.

120. Documentation should be brief, yet provide evidence that the design and development has had the benefit of expertise from all the ADS fields which are involved.

121. For periodic technical inspections, the documentation should describe how the current operational status of "The ADS" can be checked.

122. Information about how the software version(s) and the failure warning signal status can be readable in a standardized way via the use of an electronic communication interface, at least be the standard interface (OBD port).

123. It is recommended that the documentation package show that the "ADS":

(a) Is designed and was developed to operate in such a way that it is free from unreasonable risks for the driver (if applicable), passengers and other road users within the declared ODD and boundaries;
(b) Respects, under the performance requirements specified elsewhere by FRAV;

(c) Was developed according to the development process/method declared by the manufacturer.

124. Documentation should be made available in three parts:

(a) An information document which is submitted to the authority should contain brief information on the items.

(b) The formal documentation package annexed to the information document, which should be supplied to the Authority for the purpose of conducting the safety assessment.

(c) Additional confidential material and analysis data (intellectual property) which should be retained by the manufacturer, but made open for inspection (e.g. on-site in the engineering facilities of the manufacturer) at the time of the product assessment / process audit. The manufacturer should ensure that this material and analysis data remains available for a period of 10 years counted from the time when production of the ADS is discontinued.

125. Any changes to ADS safety design should be communicated as required to the relevant authority.

X. In-service monitoring and reporting – Pillar 5

126. The In-Service Monitoring and Reporting pillar (ISMR) addresses the in-service safety of automated vehicles after market introduction. In practice, the application of the other pillars of the NATM guidelines will assess whether the ADS is reasonably safe for market introduction; whereas the in-service monitoring and reporting will gather additional evidence from the field operation to demonstrate that that the ADS continues to be safe when operated on the road. This pillar addresses the dynamic nature of road transportation to ensure attention to and continuous improvement of road safety through the use of ADS.

127. The pillar consists in the collection of relevant data during AVs operation.

128. The obligation to have “real-time monitoring” (self-checks/ on board diagnostics) of the performance of ADS subsystems by the manufacturer is not part of this pillar but is part of the safety requirements. However, some monitoring mechanisms on the performance of ADS subsystems overtime could be part of the objective 1 that has been described below in “general guidance on ISMR implementation”, and contribute to the predictive monitoring of safety performance degradation.

129. The processes put in place by the manufacturer to manage safety during in use (e.g. to manage changes in the traffic rules and in the infrastructure) fall outside this pillar and are assessed with the audit pillar. This pillar focuses on the type of data to be monitored and reported.

130. Whatever safety evaluation is done before market introduction, the actual level of safety will only be confirmed once a sufficient number of vehicles are in the field and once they are subjected to a sufficient range of traffic and environmental conditions. It is recommended that a feedback loop (fleet monitoring) is in place to confirm the safety by design concept and the validation carried out by the manufacturer before market introduction. The operational experience feedback from in-use monitoring will allow ex-post evaluation of regulatory requirements and validation methods, providing indications on gaps and needs for review.

131. New scenarios and new risks might be introduced by AVs on the market. Therefore, the In-Use Monitoring pillar can be used to identify new scenarios to support the development of common scenario catalogue to cover these new safety risks.

132. Finally, in the early phase of market introduction of ADS, it is essential that the whole community learns from crashes involving AVs in order to quickly respond to and develop safety mitigation measures.
A. General guidance on ISMR implementation

133. In-Service Monitoring and Reporting (ISMR) addresses the monitoring and reporting of the in-service ADS safety performance by the manufacturer. ISMR applies to occurrences which endanger or which, if not corrected, would endanger a vehicle, its occupants or any other person, and more generally to all occurrences relevant to the safety performance of the ADS. Annex IV provides a list of examples of these occurrences.

134. ISMR enables the identification of unreasonable risks related to the use of ADS vehicles on public roads and the evaluation of its safety performance during real-world operation.

135. ISMR requires ADS manufacturers to collect and analyse the safety-relevant information related to their in-service ADS vehicles’ operation and report data on safety concerns, occurrences and performance metrics to the relevant authority.

136. The ADS safety performance during its lifetime remains the responsibility of the ADS manufacturer.

137. ISMR provides safety authorities with manufacturer information to complement information that may be gathered from other sources.

1. Objectives

138. The aim of ISMR is to contribute to the improvement of road safety by ensuring that relevant information on safety is collected, processed and disseminated.

139. The ISMR aims to fulfil three main objectives:

 (a) Identify safety risks related to ADS performance that need to be addressed, including instances of non-compliance with ADS safety requirements (objective 1);

 (b) Support the development of the Scenario Catalogue through the identification of new scenarios relevant to the ADS safety (objective 2);

 (c) Share information and recommendations to promote continuous improvement of ADS safety performance (objective 3).

140. The level of safety after market introduction needs to be evaluated once a sufficient number of vehicles are in-service and have encountered a sufficient range of traffic and environmental conditions. It is therefore essential that a feedback loop, facilitated by this monitoring and reporting, is in place. This will provide data to assess and review the ADS manufacturer’s safety case and validation of information generated to enable market introduction. The operational experience feedback from ISMR will allow ex-post evaluation of the regulatory requirements and validation methods, providing an indication of any issues and consequently the need for any modification.

141. For example, utilising the information on ADS performance under real-world conditions could help to enhance or elaborate track tests. Furthermore, ISMR concerning user-interaction metrics could provide information useful for improving ADS HMI, its usability, and driver education.

142. Unanticipated situations, risks and hazards might be identified during real-world ADS operation, and this information could be used to develop new scenarios for the common scenario catalogue.

143. In the early phase of market introduction of ADSs, it is essential that the whole community learns from safety-critical situations involving AVs. It is important therefore that there is a mechanism that allows information from the ISMR and recommendations from its analysis to be shared with the ADS community. This will allow others to react and should lead to developments that reduce or prevent that situation for other ADSs.

144. Collection, processing and dissemination of information related to ADS safety performance from the ISMR will also facilitate the evaluation of the impact of ADS on the safety of the road network.
2. In Service Monitoring

145. The manufacturer should set up a monitoring program aimed at collecting and analysing vehicle data, and data from other sources. It should provide evidence of the in-service safety performance of the ADS and confirmatory evidence of the audit results of the Safety Management System requirements established by the Audit Pillar.

(a) Vehicle data collection

146. There is regulatory work to introduce EDR and DSSAD requirements. Until those requirements have been defined this section is only suggesting the data elements that may be collected and uploaded by the manufacturer from ADS vehicles for aggregation and processing in order to report performance metrics defined under the Reporting section.

(b) Other manufacturer-accessible sources of data indicative of ADS performance

147. Manufacturers may be expected to collect data relevant to typical operations such as dealer reports, customer reports, etc.

3. In Service Reporting

148. The main purpose of occurrence reporting is the prevention of accidents and incidents and not to attribute blame or liability.

149. Recommended reporting by the manufacturer

150. The manufacturer should report, as required by the Authority, on both critical and non-critical occurrences. Two types of report on the in-service safety performance of the ADS vehicle are expected.

151. Short term reporting of occurrences and safety concerns that require the manufacturer to take remedial action, including:

 (a) Indications of failure to meet safety requirements
 (b) Critical occurrence where the ADS was at fault
 (c) Other safety-relevant performance issues

152. Short reporting is due within [one month of the critical occurrence] and is needed when the data provides evidence of the ADS posing an unacceptable in-service risk.
153. Occurrences relevant to this short-term reporting are listed in Annex IV.

154. At National level, there may be further requirements for immediate reporting/notification to the authority in the event the ADS manufacturer becomes aware of a failure /defect which poses an immediate risk to public safety.

155. The manufacturer should also undertake periodic reporting of performance metrics and occurrences to the safety authority.

156. Annex IV provides a list of critical and non-critical occurrences aligned with FRAV’s high level requirements. This represents the generic areas of interest that VMAD intends to define in greater detail. VMAD will consider both the usefulness of each suggested reporting element to the safety authorities, their capacity to review the volume of data reported, and the feasibility of storing, collecting and reporting the various elements.

157. The periodic report should be delivered regularly [at least every year], and should provide evidence of the in-service ADS safety performance. In particular, it should demonstrate that:

(a) No inconsistencies have been detected compared to the ADS safety performance assessed prior to market introduction;

(b) The ADS respects the performance requirements set by FRAV and as evaluated in the test methods developed by VMAD;

(c) Any newly discovered significant ADS safety performance issues have been adequately addressed and how this was achieved.

158. The short term and periodic reports should be made available, as required by the Authority, in two parts:

(a) A report, that contains a summary and the information relevant to the requirements in (a) (b) and (c) above;

(b) The data underpinning the report, exchanged with the authority by means of an agreed data exchange file.

159. The authority should be informed about and agree the steps undertaken in processing the data for the report.

160. Where feasible, a consistent approach to the reporting should be developed by contracting parties, and their relevant domestic authorities.

161. The authority, where necessary, may verify the information provided and, if needed, may make recommendations to the enforcement authority and/or to the ADS manufacturer to remedy any detected conditions constituting an unreasonable risk to safety.

XI. NATM Pillars/Element Interaction

162. The goal of the NATM guidelines document is to assess the safety of an ADS in a manner that is as repeatable, objective and evidence based as possible, whilst remaining technology neutral and flexible enough to foster ongoing innovation in the automotive industry.

163. The overall purpose of the NATM is to assess, based on the safety requirements, whether the ADS is able to cope with occurrences that may be encountered in the real world. In particular, by looking at scenarios linked to road users' behaviour/environmental conditions in Traffic scenarios as well as scenarios linked to driver behaviour (e.g. HMI) and ADS failures.

164. As previously noted, the multi-pillar approach recognizes that the safety of an ADS cannot be reliably assessed/validated using only one of the pillars. Each of the aforementioned testing methodologies possesses its own strengths and limitations, such as differing levels of environmental control, environmental fidelity, and scalability, which should be considered accordingly.
165. It is important to note that a single assessment or test method may not be enough to assess whether the ADS is able to cope with all occurrences that may be encountered in the real world.

166. For instance, while real-world testing provides a high degree of environmental fidelity, a scenario-based testing methodology using only real-world testing could be costly, time-consuming, difficult to replicate, and pose safety risks. Consequently, track testing may be more appropriate methods to run higher risk scenarios without exposing other road users to potential harm. Further, test scenarios can also be more easily replicated in a closed track environment compared to the real-world. That said, test track scenarios can be potentially difficult to develop and implement, especially if there are numerous or complex scenarios, involving a variety of scenario elements.

167. Consideration should be given to the fact that simulation/virtual testing, by contrast, can be more scalable, cost-effective, safe, and efficient compared to track or real-world testing, allowing a test administrator to safely and easily create a wide range of scenarios, including complex scenarios, where a diverse range of elements are examined. However, simulations may have lower fidelity than the other methodologies. Simulation software may also vary in quality and tests could be difficult to replicate across different simulation platforms.

168. In-service monitoring and reporting should be used to confirm the pre-deployment safety assessment and fill the gaps between safety validation through virtual/physical testing and real-life conditions. Evaluation of in-service performance should also be used to update the scenario database with new scenarios deriving from increasing deployment of driving automation. Finally, the feedback from operational experience can support ex-post evaluation of regulatory requirements.

169. In addition to the respective strengths and weakness of each test pillar, the nature of the safety requirements being assessed will also inform what pillars are used:

 (a) For instance: the most appropriate method to assess an ADS’s overall system safety prior to market introduction may be the audit pillar, using a systematic approach to perform a risk analysis. The audit could include information such as safety by design confirmed validation outputs as well as analysis of data collected in the field by the manufacturer.

 (b) Virtual testing may be more suitable when there is a need to vary test parameters and a large number of tests need to be carried out to support efficient scenario coverage (e.g., for path planning and control, or assessing perception quality with pre-recorded sensor data).

 (c) Track tests may be best suited for when the performance of an ADS can be assessed in a discrete number of physical tests, and the assessment would benefit from higher levels of fidelity (e.g., for HMI or fall back, critical traffic situations).

 (d) Real-world testing may be more suitable where the scenario may not be precisely represented virtually or on a test track (e.g., interactions with other road-users and perception quality may be assessed through real world evaluation).

 (e) In-service monitoring and reporting of field data represent the best way to confirm the safety performance of an ADS in the field after market introduction over a wide variety of real driving traffic and environmental conditions.

170. Given these considerations, it should be noted that the sequence and composition of test pillars used to assess each safety requirement may vary. While some testing might follow a logical sequence from simulation to track and then to real world testing, there may be deviations depending on the specific safety requirement being tested.

171. It is therefore necessary for the NATM pillars to be used together to produce an efficient, comprehensive, and cohesive process, considering their strengths and limitations. The methods should complement one another, avoiding excessive overlaps or redundancy to ensure an efficient and effective validation strategy.
172. As previously noted, the NATM pillars not only include the three aforementioned test methods but also an aggregated analysis (e.g., an audit/assessment/in service monitoring/reporting pillar). Whereas the test methods will assess the safety of the ADS, the audit/assessment pillar will serve to assess the safety of the ADS as well as the robustness of organizational processes/strategies. Elements of the audit are:

(a) Assessment of the robustness of safety management system.

(b) Assessment of the (identified) hazards and risks for the system.

(c) Assessment of the Verification strategy (e.g., verification plan and matrix) that describe the validation strategy and the integrated use of the pillars to achieve the adequate coverage.

(d) Assessment of the level of compliance with requirements achieved through an integrated use of all pillars, including consistency between the outcomes of one pillar as input for another pillar (forward and backward) and adequate use of scenarios. This level of compliance concerns both new vehicles as vehicles in use.

(e) The audit/assessment phase also incorporate results from the Simulation, Track test and Real-World tests carried out by the manufacturer.

173. Figure 3 provides a diagram that outlines how the pillars, scenarios, and safety requirements (developed by FRAV) will interact. Further examination of each of these elements follows in the subsequent sections of this document.
XII. VMAD NATM- FRAV Integration

174. This document contains the description of a generic validation method. Likewise, FRAV (Functional Requirements for Automated Vehicles) is developing generic requirements for the product to be validated. There is a clear relation between these two developments: functional requirements may affect the detailed validation requirement and vice versa. Furthermore, validation requirement may result in input for functional requirements.

175. So far, FRAV has delivered a list of high level safety requirements. In detailing the functional requirements, the possible impact for validation methods will have to be checked. This process is managed by including representatives of both informal working groups in each other’s meetings.

176. As the safety requirements and technical aspects of each of the pillars are further developed, each of these sections will be updated to include additional detail. To provide further context, this section will also include examples of how the NATM pillars can be applied to certain functional capabilities of an ADS (e.g., highway driving, which is described further in Annex II) based on the established safety requirements. FRAV and VMAD will continue to engage to develop and update functional requirements and the technical aspects of each pillar as necessary. This is key to ensuring safety guidance is updated as ADS technologies evolve.
Annex I

Glossary of Terms and Definitions

“Abstraction” is the process of selecting the essential aspects of a source system or referent system to be represented in a model or simulation, while ignoring those aspects not relevant. Any modelling abstraction carries with it the assumption that it should not significantly affect the intended uses of the simulation tool.

“Automated Driving System (ADS)” means the vehicle hardware and software that are collectively capable of performing the entire Dynamic Driving Task (DDT) on a sustained basis.

“ADS feature” means an application of an ADS designed specifically for use within an Operation Design Domain (ODD).

“ADS function” means an application of ADS hardware and software designed to perform a specific portion of the DDT.

“Closed Loop Testing” means a virtual environment that does take the actions of the element-in-the-loop into account. Simulated objects respond to the actions of the system (e.g. system interacting with a traffic model).

“Concrete Scenarios”: Concrete scenarios are established by selecting specific values for each element. This step ensures that a specific test scenario is reproducible. In addition, for each logical scenario with continuous ranges, any number of concrete scenarios can be developed, helping to ensure a vehicle is exposed to a wide variety of situations.

“Complex Scenarios” means a traffic scenario containing one or more situations that involve a large number of other road users, unlikely road infrastructure, or abnormal geographic/environmental conditions.

“Critical Scenarios” means a traffic scenario containing a situation in which the ADS needs to perform an emergency maneuver in order to avoid/mitigate a potential collision, or react to a system failure.

“Deterministic” is a term describing a system whose time evolution can be predicted exactly and a given set of input stimuli will always produce the same output.

“Driver-In-the-Loop” (DIL) is typically conducted in a driving simulator used for testing the human–automation interaction design. DIL has components for the driver to operate and communicate with the virtual environment.

“Dynamic driving task (DDT)” means all of the real-time operational and tactical ADS functions required to operate the ADS-equipped vehicle in on-road traffic.

- The DDT excludes strategic functions such as trip scheduling and selection of destinations and waypoints.
- The DDT functions can be logically grouped under three main categories:
 (a) Sensing and Perception
 (b) Planning and Decision
 (c) Vehicle Control

“Edge Case” is a rare situation that still requires specific design attention for it to be dealt with by the AV in a reasonable and safe way. The quantification of “rare” is relative, and generally refers to situations or conditions that will occur often enough in a full-scale deployed fleet to be a problem but may have not been captured in the design process. Edge cases can be individual unexpected events, such as the appearance of a unique road sign or an unexpected animal type on a highway.
“Functional Scenario”: Scenarios with the highest level of abstraction, outlining the core concept of the scenario, such as a basic description of the ego vehicle’s actions; the interactions of the ego vehicle with other road users and objects; and other elements that compose the scenario (e.g., environmental conditions etc.). This approach uses accessible language to describe the situation and its corresponding elements. For the scenario catalogue, such an accessible (i.e., natural and non-technical) language needs to be standardised to ensure common understanding between different AV stakeholders about the scenarios.

“Hardware-In-the-Loop” (HIL) involves the final hardware of a specific vehicle sub-system running the final software with input and output connected to a simulation environment to perform virtual testing. HIL testing provides a way of replicating sensors, actuators and mechanical components in a way that connects all the I/O of the Electronic Control Units (ECU) being tested, long before the final system is integrated.

“Logical Scenario”: Building off the elements identified within the functional scenario, developers generate a logical scenario by selecting value ranges or probability distributions for each element within a scenario (e.g., the possible width of a lane in meters). The logical scenario description covers all elements and technical requirements necessary to implement a system that solves these scenarios.

“Model” is a description or representation of a system, entity, phenomenon, or process.

“Model calibration” is the process of adjusting numerical or modelling parameters in the model to improve agreement with a referent.

“Model-In-the-Loop” (MIL) is an approach which allows quick algorithmic development without involving dedicated hardware. Usually, this level of development involves high-level abstraction software frameworks running on general-purpose computing systems.

“Model Parameter” are numerical values used to support characterizing a system functionality. A model parameter has a value that cannot be observed directly in the real world but that must be inferred from data collected in the real world (in the model calibration phase).

“Nominal Scenarios” means a traffic scenario containing situations that reflect regular and non-critical driving manoeuvres.

“Occurrence” refers to any safety-related event involving a vehicle equipped with an ADS. For reporting, two different categories of occurrences are defined.

“Non-critical Occurrence” means an operational interruption, defect, fault or other circumstance that has or may have influenced ADS safety but has not resulted in an accident or serious incident. This category includes for example minor incidents, safety degradation not preventing normal operation, emergency/complex manoeuvres to prevent a collision, and more generally all occurrences relevant to the safety performance of the in-service ADS (like transfer of control, interaction with remote operator, etc.).

“Critical Occurrence” means an occurrence in which the ADS is engaged at the time of the event and:

(a) at least one person suffers an injury that requires medical attention as a result of being in the vehicle or being involved in the event;

(b) the ADS vehicle, other vehicles or stationary objects sustain physical damage that exceeds a certain threshold;

(c) any vehicle involved in the event experiences an airbag deployment

“Operational Design Domain (ODD)” means the operating conditions under which an ADS feature is specifically designed to function.

“ODD exit” means:

(a) the presence of one or more ODD conditions outside the limits defined for use of the ADS feature, and/or

(b) the absence of one or more conditions required to fulfil the ODD conditions of the ADS feature.
“Open Loop Testing” means a virtual environment that does not take the actions of the element-in-the-loop into account (e.g. system interacting with a recorded traffic situation).

“Probabilistic” is a term pertaining to non-deterministic events, the outcomes of which are described by a measure of likelihood.

“Proving Ground or test-track” is a physical testing facility closed to the traffic where the performance of an ADS can be investigated on the real vehicle. Traffic agents can be introduced via sensor stimulation or via dummy devices positioned on the track.

“Sensor Stimulation” is a technique whereby artificially generated signals are provided to the element under testing in order to trigger it to produce the result required for verification of the real world, training, maintenance, or for research and development.

“Simulation” is the imitation of the operation of a real world process or system over time.

“Simulation toolchain” is a combination of simulation tools that are used to support the validation of an ADS.

“Software-In-the-Loop” (SIL) is where the implementation of the developed model will be evaluated on general-purpose computing systems. This step can use a complete software implementation very close to the final one. SIL testing is used to describe a test methodology, where executable code such as algorithms (or even an entire controller strategy), is tested within a modelling environment that can help prove or test the software.

“Stochastic” means a process involving or containing a random variable or variables. Pertaining to chance or probability.

“Test case specification” are the detailed specifications of what must be done by the tester to prepare for the test.

“Test methods” is a structured approach to consistently derive knowledge about the ADS by means for executing tests, e.g. virtual testing in simulated environments, physical, structured testing in controlled test facility environments, and real world on-road conditions.

“Traffic scenario” (or scenario for short) is a sequence or combination of situations used to assess the safety requirements for an ADS. Scenarios include a DDT or sequence of DDTs. Scenarios can also involve a wide range of elements, such as some or all portions of the DDT; different roadway layouts; different types of road users and objects exhibiting static or diverse dynamic behaviours; and, diverse environmental conditions (among many other factors).

“Transfer of Control (TOC)” means a transfer of dynamic control of the vehicle from the ADS to the fallback user.

“TOC request” means a warning issued by the ADS to the fallback user that the latter is needed to engage in dynamic control of the vehicle.

“TOC response” means the fallback user engagement in the dynamic control of the vehicle pursuant to a TOC request.

“Validation of the simulation model” is the process of determining the degree to which a simulation model is an accurate representation of the real world from the perspective of the intended uses of the tool.

“Vehicle-In-the-Loop” (VIL) is a fusion environment of a real testing vehicle in the real-world and a virtual environment. It can reflect vehicle dynamics at the same level as the real-world and it can be operated on a vehicle test bed or on a test track.

“Verification of the simulation model” is the process of determining the extent to which a simulation model or a virtual testing tool is compliant with its requirements and specifications as detailed in its conceptual models, mathematical models, or other constructs.

“Virtual testing” is the process of testing a system using one or more simulation models.
Annex II

Functional Scenarios for divided highway application

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>31</td>
</tr>
<tr>
<td>II. Inputs to this proposal</td>
<td>31</td>
</tr>
<tr>
<td>III. Building blocks of functional scenarios</td>
<td>31</td>
</tr>
<tr>
<td>IV. Coverage</td>
<td>31</td>
</tr>
<tr>
<td>V. Symbols used in this document</td>
<td>32</td>
</tr>
<tr>
<td>VI. A list of possible scenarios for L3 Highway Chauffeur ADS</td>
<td>32</td>
</tr>
<tr>
<td>A. Nominal driving (Perform lane keeping)</td>
<td>34</td>
</tr>
<tr>
<td>1. Nominal driving (Perform lane keeping)</td>
<td>34</td>
</tr>
<tr>
<td>B. Interaction with other vehicles/objects</td>
<td>35</td>
</tr>
<tr>
<td>1. Perform lane change</td>
<td>36</td>
</tr>
<tr>
<td>2. Critical (Emergency) braking scenarios during lane keeping</td>
<td>37</td>
</tr>
<tr>
<td>C. Detect and response to traffic rules and road furniture</td>
<td>40</td>
</tr>
<tr>
<td>D. Country specific road geometry</td>
<td>43</td>
</tr>
<tr>
<td>E. Unusual situation</td>
<td>43</td>
</tr>
<tr>
<td>VII. References</td>
<td>44</td>
</tr>
</tbody>
</table>
I. Introduction

This text is a synthesis of various recent elaborations of Traffic scenarios, with the designated purpose to create a functional scenario list for ADS in motorway use-case. It is envisaged that some logical scenarios and/or some possible ways of their description, as agreed in the continuous discussion, will also be included in this text. ODD range: highways with up to 130 km/h and lane changes allowed.

II. Inputs to this proposal

(a) Present UN ALKS regulation (R157)
(b) The Netherlands (TNO) Scenario Categories V1.7
(c) SAFE (Fortellix) scenario library Error! Reference source not found.
(d) Japan Crash scenarios
(e) China functional scenario proposal (CATARC)
(f) JRC own elaborations
(g) Germany (IGLAD) catalogue of conflict types

Inputs provided by JP, NL, SAFE, CN were submitted for consideration and discussion during the VMAD SG1 meeting held on 10 December, proposal from DE submitted on 16 December 2020.

III. Building blocks of functional scenarios

As described previously in the Scenario Catalogue section, functional scenarios can cover several aspects (e.g. road geometry at different abstraction levels, ego-vehicle behaviour, moving/stable objects).

Additional aspects that are not covered by functional scenarios (e.g. speeds, accelerations, positions, environmental conditions, failures, miscommunications, road geometries at more detailed levels) should be covered by logical scenario.

Since classification of aspects to functional and logical scenarios (i.e. “which aspects should be considered in functional scenarios” and “which aspects should be considered in logical scenarios”) has not yet been discussed and agreed, the classification in this document is initial version and will be updated through discussion.

IV. Coverage

Collisions always occur with other vehicles/objects (assuming that they can operate properly when there are no other vehicles/objects). The 24 functional scenarios in the figure described in section “2. Interaction with other vehicles” under Nominal Driving can cover all interactions between other vehicles/objects and ego vehicle. These scenarios can cover collision with other vehicles/objects appropriately.

As described above, factors not covered in the proposed functional scenarios (e.g. initial speed of ego vehicle, size, initial position, initial speed, acceleration of other vehicles/objects), perception factor (e.g. weather, brightness, blind spot, false positive factor, blinkers of other vehicles) and vehicle stability factors (e.g. curve, slope, road surface μ, wind, etc.) can be described with parameters in logical scenarios.

As previously mentioned, it is anticipated that future iterations of Annex II will also incorporate scenarios with lower levels of abstraction (e.g. logical scenarios and potential approaches for describing them). Functional scenarios should be added when agreement is reached between SG1 and VMAD-IWG.
V. Symbols used in this document

<table>
<thead>
<tr>
<th>ICON</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ego vehicle</td>
</tr>
<tr>
<td></td>
<td>Lead vehicle</td>
</tr>
<tr>
<td></td>
<td>Other vehicles part of the scenario</td>
</tr>
<tr>
<td></td>
<td>Impassable object on intended path</td>
</tr>
<tr>
<td></td>
<td>Passable object on intended path</td>
</tr>
</tbody>
</table>

VI. A list of possible scenarios for L3 Highway Chauffeur ADS

Input matrix from VMAD-SG1 participants:

<table>
<thead>
<tr>
<th>Scenario family</th>
<th>Sub-scenario</th>
<th>Japan crash scenarios</th>
<th>The Netherlands (TNO)</th>
<th>SAFE scenario library</th>
<th>China functional scenarios</th>
<th>Conflict Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nominal driving</td>
<td>1-1. Perform lane keeping</td>
<td>a. Driving straight</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Manoeuvring a bend</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>2-1. Perform lane change</td>
<td>a. Ego vehicle performing lane change with vehicle behind</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Merging at highway entry</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Merging at lane end</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Merging into an occupied lane</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Interaction with other vehicles/objects</td>
<td>2-2. Critical (Emergency) braking scenarios during lane keeping</td>
<td>e. Impassable object on intended path</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>f. Passable object on intended path</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>g. Lead vehicle braking</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>h. Approaching slower/stopped LV</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i. Cut-in in front of the ego vehicle</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>j. Cut-out in front of the ego vehicle</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Scenario family

<table>
<thead>
<tr>
<th>Sub-scenario</th>
<th>Japan crash scenarios</th>
<th>The Netherlands (TNO)</th>
<th>SAFE scenario library</th>
<th>China functional scenarios</th>
<th>Conflict Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>k. Detect and respond to swerving vehicles</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3. Detect and response to traffic rules and road furniture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Speed limit sign</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Signal lights</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>c. Drive through tunnel</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>d. Toll</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>e. Conventional obstacles</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4. Country specific road geometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Interceptor</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5. Unusual situation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Wrong way driver (oncoming)</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Notes to the inputs from VMAD SG1 members:

- **China (CATARC):** This is a list cut from a general catalogue describing different ODDs, like “General road”, “City expressway” or “The highway” and their test items, like “speed limit sign”, “lane line”, “toll station”, etc. The functional scenarios proposed below in this document are much more generic than the ones proposed by China, so they form a subset of this list. For example, China proposal: “toll station” on the road or “conventional obstacles” can be in line with “impassable object on intended path” from this scenario list.

- **The Netherlands (TNO):** a very thorough scenario catalogue containing much more scenarios than needed for the highway use case. Terminology and descriptions worked out fully. Scenarios can be created using a combination of tags from the different layers.

- **Japan:** crash scenarios, scenarios only containing interaction with other vehicles. They describe different road geometries and possible other vehicle positions around ego. All other parameters considered as features (acceleration – deceleration, lane change – lane keeping, etc.).

- **SAFE:** a list of scenarios sometimes with very concrete examples, sometimes more generic approach. There is a different scenario for passing by slowly moving vehicles in the adjacent lane and a different one for passing by standing vehicles, but handles LV following as one scenario.

- **Conflict Type:** a list of “conflict types” used i.a. by accident investigators to sort scenarios, leading to accidents on road to different groups. These conflict types can be sorted into conflicts with or without influence of other road user. Uses different symbols than other documents for the description of a scenario or situation (mainly different kinds of arrows). Separates left and right hand traffic. Contains 251 scenario types, structured in seven larger types of conflicts, like: “longitudinal traffic” or “pedestrian crossing the road”.

Note: “emphasized scenario parameters” and “tested parameters” in this paragraph are some examples of parameters. Other parameters may be essential for the validation testing.

A. Nominal driving (Perform lane keeping)

1. Nominal driving (Perform lane keeping)

Note: lane keeping is addressed in current UN-Regulation for ALKS No. 157 up to 60 km/h. As a functional scenario, lane keeping can be sorted into two groups depending on road geometry. It can also be sorted into more groups depends on the lane that the vehicle is in: centre, side, middle, etc.

(a) Driving straight

(a) Without LV
(b) With LV
(c) With other vehicles in adjacent lanes (moving or stopped)

Figure 1
Schematic representation of driving straight

General description:

The ego vehicle is driving on a straight road. The aim of this scenario is to test the lane keeping ability of the vehicle under normal or demanding conditions and parameters [1,2,4]. Emphasized scenario parameters: ego speed demand (road rules), lane width, LV speed profile (if present), layout and speed profile of other vehicles (if present).

Tested parameters: deviation from lane centre (nominal value and distribution), deviation from desired speed, obeying to speed changes, temporal modifications, distance between ego and LV (if present), reaction to other vehicles etc.

(b) Manoeuvring a bend (right curve and left curve)

(a) Without LV
(b) With LV
(c) With other vehicles in adjacent lanes (moving or stopped)
Figure 2
Schematic representation of manoeuvring a bend

General description:

The ego vehicle is driving on a curved road. The aim of this scenario is to test if the vehicle is able to handle the road curvatures specified as part of the ODD [1,2,4].

Emphasized scenario parameters: ego speed demand (road rules), lane width, LV speed profile (if present), layout and speed profile of other vehicles (if present).

Tested parameters: deviation from lane centre (nominal value and distribution), deviation from desired speed, obeying to speed changes, temporal modifications, distance between ego and LV (if present), distance to other vehicles etc.

B. Interaction with other vehicles/objects

The 24 scenarios below can cover the interaction with other vehicles driving in the same direction on the same or adjacent lanes.

In the 12 scenarios in which the ego vehicle performs lane change, the vehicle closest to the ego vehicle may not be necessarily in the same lane or an adjacent lane to the ego vehicle. It may be 2 lanes over from the ego vehicle, and even in such cases, the vehicle has to be detected by the ego vehicle because they can interact with one another if both change lanes. To describe these cases in the 12 scenarios properly, some parameters should be included such as “number of lanes”, “lane of ego vehicle” and “relative position between ego and other
vehicle”. The examples of “main road case” are shown below. Other cases in “merged road” and “branched road” should be considered too.

1. Perform lane change

 Note: LC scenarios are complicated by the fact that the ADS cannot be forced to make a lane change. In addition, lane change functionality and principles shall be defined in a later stage (like technical requirements, definitions, activation criteria, indication of lane change, etc.). Lane changes can be grouped based on the number of vehicles in the target lane. If there is enough space to execute the lane change, there is no need to cooperate with other vehicles. If the target lane is occupied by other traffic participants, than the ego vehicle has to adapt to the other participants and perform merging.

 (a) Ego vehicle performing lane change with vehicle behind

 Figure 3

 Schematic representation of a lane change

 General description:

 In an adjacent lane, another vehicle is driving in the same direction as the ego vehicle. The intention of the ego vehicle is, to perform a lane change to the lane in which the other player is driving [1,3].

 Emphasized scenario parameters: time of lane change, ego speed demand (road rules), lane width, LV speed profile (if present), layout and speed profile of other vehicles (if present).

 Tested parameters: deviation from lane centres (nominal value, overshoot), time of lane change (lateral velocity of ego), distance between ego and LV (if present), distance to other vehicles, etc.
(b) Merging at highway entry
No description provided

(c) Merging at lane end
No description provided

(d) Merging into an occupied lane
Figure 4
Schematic representation of merging

General description:
Other vehicles occupy the lane adjacent to the ego lane. The ego vehicle intends to perform
a lane change to the lane in which the other vehicles are driving [1-4]. According to road
geometry, speed, number and layout of other vehicles, the difficulty of the scenario changes.

Emphasized scenario parameters: road layout, layout and speed profile of other vehicles (if
present), ego speed (road rules), lane width etc.

Tested parameters: distance to other vehicles, time of lane change (lateral velocity of ego).

2. Critical (Emergency) braking scenarios during lane keeping

Note: In this family of scenarios a couple critical functional scenarios are present. It can be
noticed in the input matrix of SG1 as well, these are scenarios that nearly every participant
highlighted in the input documents.

(a) Impassable object on intended path (Including other cars and VRUs)
Figure 5
Schematic representation of an impassable object

General description:
The ego vehicle is driving on a road with an impassable object in the ego lane. The objective
of the ego vehicle is to continue driving straight. The ego vehicle needs to react [1,2].
Depending on the velocity of the ego vehicle, the severity of the scenario is changing.
Emphasized scenario parameters: road layout (visibility of the object on the path), layout and speed profile of other vehicles (if present), ego velocity.

Tested parameters: reaction of ego (lane change/braking), distance to object, lateral velocity of ego (if changing lane) etc.

b) Passable object on intended path (e.g. manhole lid)

Figure 6
Schematic representation of a passable object

General description:

The ego vehicle is driving on a road with a passable object in the ego lane, e.g., a manhole lid or a small branch. The objective of the ego vehicle is to continue driving straight. The ego vehicle needs to react [1,4]. Depending on the velocity of the ego vehicle, the difficulty of the scenario is changing.

Emphasized scenario parameters: road layout (visibility of the object on the path), layout and speed profile of other vehicles (if present), ego velocity.

Tested parameters: reaction of ego (false positive, lane change/braking), distance to object, lateral velocity of ego (if changing lane), etc.

c) Lead vehicle braking

Figure 7
Schematic representation of lead vehicle braking

General description:

The ego vehicle is following a LV. The LV brakes, the ego vehicle has to adapt its speed in order to stay at a safe distance from the lead vehicle [1–4].

Emphasized scenario parameters: ego velocity (road rules), LV speed profile (deceleration), layout and speed profile of other vehicles (if present).

Tested parameters: distance between ego and LV, reaction to other vehicles in adjacent lanes, etc.
(d) Approaching slower/stopped LV

Figure 8
Schematic representation of approaching stopped lead vehicle

General description:
LV is driving in front of the ego vehicle at a slower speed. The ego vehicle might brake or perform a lane change to avoid a collision [1-4]. According to the speed of the LV and ego vehicle, the severity of this scenario can be assessed.

Emphasized scenario parameters: ego velocity (road rules), LV speed profile (deceleration), layout and speed profile of other vehicles (if present).

Tested parameters: distance between ego and LV, reaction to other vehicles in adjacent lanes, etc.

(e) Cut-in in front of the ego vehicle

Figure 9
Schematic representation of cut-in

General description:
Another vehicle is driving in the same direction as the ego vehicle in an adjacent lane. The other vehicle makes a lane change, such that it becomes the LV from the ego vehicle’s perspective [1-4]. Depending on the distance and lateral velocity of the LV, the severity of the cut-in manoeuvre changes.

Emphasized scenario parameters: LV lateral speed, distance to LV, ego velocity, lane width, layout and speed profile of other vehicles (if present).

Tested parameters: distance between ego and LV, distance to other vehicles, etc.

(f) Cut-out in front of the ego vehicle
(a) Cut-out to highway exit
(b) Cut-out on highway lanes
Figure 10
Schematic representation of cut-out

General description:
LV is driving in the same direction as the ego vehicle in front of the ego vehicle. The LV makes a lane change, such that it will no longer be the ego vehicle’s LV [1-4]. In order to test the behaviour of the ego vehicle, an obstacle is present in the ego lane in front of the ego vehicle. Depending on the velocity of the ego vehicle and the lateral velocity of the LV, the difficulty of this scenario changes.

Emphasized scenario parameters: LV lateral speed, distance to LV, ego velocity, lane width, layout and speed profile of other vehicles (if present).

Tested parameters: distance between ego and obstacle, distance to other vehicles etc.

(g) Detect and respond to swerving vehicles

Figure 11
Schematic representation of a swerving vehicle

General description:
Another vehicle is driving in the same direction as the ego vehicle in an adjacent lane. The other vehicle swerves towards the ego vehicle’s lane [1-3].

Emphasized scenario parameters: lateral speed of other vehicle, ego velocity, lane width, layout and speed profile of other vehicles (if present).

Tested parameters: distance between ego and swerving vehicle, distance to other vehicles, etc.

C. Detect and respond to traffic rules and road furniture

Note: These scenarios are implicitly present in nearly every document, but sometimes are treated as special road furniture. It should be considered that these scenarios can be occurred simultaneously with other scenarios. It should be also noted that traffic rules are different from different countries or regions.
(a) **Speed limit sign**

This scenario challenges the ego vehicle to respond appropriately to speed limit changes by decelerating when entering a lower speed zone and accelerating when entering a higher speed zone. In the example shown below, the speed limit decreases from 80kph to 60kph.

Figure 12

Ego vehicle speed limit change scenario

Environmental requirements: A road that has at least one change in the speed limit.

Ego vehicle behaviour: The ego vehicle drives on the road, presumably adapting its speed to the changing limitations.

Ego vehicle merge at lane end

(b) **Signal lights**

The test road consists of at least two lanes. The signal lights are set above the road, and the signal lights of adjacent lanes are kept in green state.

Figure 13

Testing scenario diagram for expressway signal lights
(c) **Drive through tunnel**

Figure 14

Schematic representation of driving through tunnel

General description:

The ego vehicle is driving through a tunnel (lack of GPS signals and natural light) [4]. The vehicle needs to adapt to the quickly changing light parameters and lack of global positioning. Depending on the speed of the ego vehicle, the difference between the light conditions outside and inside the tunnel and the length of the tunnel, the difficulty of the scenario is changing.

Emphasized scenario parameters: ego velocity, light conditions.

Tested parameters: ego lateral and longitudinal velocity, deviation to lane centre, etc.

(d) **Toll**

The test road is a long straight road with at least one lane. A toll station is set on this section, and toll station signs, speed limit signs and speed bumps are set in front of the toll station. This is shown in Figure 15.

Figure 15

Schematic diagram of the test scenario of driving in and out of a toll station

(e) **Conventional obstacles**

The test road is a long straight road containing at least two lanes, and the middle lane line is a white dashed line. Within the lanes, conical traffic signs and traffic markings are placed according to the traffic control requirements of the road maintenance operation. This is shown in Figure 16.
D. Country specific road geometry

Note: This scenario is only applicable for limited countries or regions. Therefore, application of this scenario can be unnecessary depends on the target market of the ADS.

(a) Interceptor

For the ego vehicle, junctions present a challenge due to the increased likelihood of conflicts with other actors.

In this scenario, the ego vehicle traverses an intersection simultaneously with another car - the interceptor. This scenario tests the ego vehicle’s behaviour when on a collision course with another car in an intersection, possibly with signs, signals, or traffic lights. The ego vehicle should be able to safely manoeuvre through the intersection and avoid or mitigate a collision.

Environmental requirements: A junction with at least three ways. It may or may not be controlled (i.e. have yield sign, traffic lights, etc.).

Ego vehicle behaviour: The ego vehicle traverses the junction in any direction (left, right or straight).

Other actors’ behaviour: Another car approaches the same junction, from a different direction and traverses the junction such that its trajectory intersects with the ego vehicle’s trajectory.

E. Unusual situation

Note: This scenario can happen in the real world. However, whether this kind of scenarios should be covered should be discussed in the appropriate group.
(a) **Wrong way driver (oncoming)**

Oncoming is a scenario in which a car approaches the ego vehicle from the opposite direction and drives past the ego vehicle.

Figure 18

Oncoming scenario

Environmental requirements: A two-lane road with traffic moving in opposite directions.

Ego vehicle behaviour: The ego vehicle drives in a lane, presumably at a constant speed.

Other actors’ behaviour: At the start of the scenario, another car is in the opposing lane, approaching the ego vehicle. At the end, the other car is still in the opposing lane, having passed the ego vehicle.

VII. **References**

Annex III

Credibility assessment for using virtual toolchain in ADS validation

I. Introduction, motivation, and scope

1. The use of Modelling and Simulation (M&S) is becoming widespread thanks to the increasing computational capabilities, accuracy, usability, and availability of M&S software packages. M&S can be beneficial for ADS safety validation because it allows to overcome some real testing limitations and to increase the number of testing scenarios. Nonetheless, M&S can also lead to erroneous/seemingly correct results, especially in relation to complex simulations not adequately supported by robust practices addressing all M&S aspects beyond pure validation. Therefore, higher confidence in M&S credibility is needed to apply virtual testing instead of/in conjunction with the other pillars. In other words, M&S can be used for virtual testing if an assessor is able to consider the simulation results credible enough to make sound decisions taking into account the potential uncertainties of M&S.

2. The validation of M&S can be considered the hallmark of simulation credibility. However, the validation has some limitations, which include the limited scope of the validation tests and the difficulty in retrieving data supporting the validation procedures. The use of M&S requires more attention towards all factors influencing the quality and validity of M&S with aim at:
 (a) Identifying a common framework to determine, justify, assess and report the overall credibility of the M&S;
 (b) Indicating the levels of confidence in results from the validation phase.

3. At the same time, this framework should be general enough to be used for different M&S types and applications. However, the goal is complicated by the broad differences across ADS features and the variety of simulation tools and toolchains. These considerations lead to introduce a (risk-based/informed) credibility assessment framework relevant and appropriate to all M&S applications.

4. The proposed credibility assessment framework provides a general description of the main aspects considered for assessing the credibility of an M&S solution together with guidelines of the role played by the relevant assessor in the validation process with respect to credibility. The assessor should investigate the documentation and evidence supporting credibility during the audit phase. It is understood that the actual validation tests will take place once there is sufficient evidence that a simulation tool or toolchain produces credible results.

5. The outcome of the current credibility assessment will define the envelope in which the virtual tool can be used to support the ADS assessment.

II. Components of the credibility assessment framework

6. It is recommended that M&S be used for virtual testing if their credibility is established by evaluating the its fitness for the intended purpose. It is recommended that credibility is achieved by investigating and assessing five M&S properties:
 (a) Capability – what the M&S can do, and what are the risks associated;
 (b) Accuracy – how well M&S does reproduce the target data;
 (c) Correctness – how sound & robust are M&S data and algorithms;
 (d) Usability – what training and experience is needed and what quality of the process applied to it.
 (e) Fit for Purpose – how suitable the M&S is for the ODD and ADS assessment.
7. Therefore, credibility requires a unified method to investigate these properties and get confidence in the M&S results. The Credibility Assessment framework introduces a way to assess and report the credibility of M&S based on quality assurance criteria that allow indicating the levels of confidence in results. In other words, the credibility is established by evaluating the following M&S influencing factors that are considered as main contributors for M&S properties and therefore for the overall M&S credibility: M&S management, team’s experience and expertise, M&S analysis and description, data/input pedigree, verification, validation, uncertainty characterization. Each of these factors indicates the level of quality achieved by M&S, and the comparison between the obtained levels and the required levels leads to consider the M&S credible and fitness to use for virtual testing. A graphical representation of the relationship among the components of the credibility assessment framework is reported in Figure 1.

A. Models and Simulation Management.

8. The M&S lifecycle is a dynamic process with frequent releases that should be monitored and documented. As a result, it is recommended that management activities should be established to support the M&S in a work product management fashion. Relevant information on the following aspects should be included in this section.

1. M&S management process

9. It is recommended that this part should:

 (a) Describe the modifications within the releases,

 (b) Designate the corresponding software (e.g., specific software product and version) and hardware arrangement (e.g., XiL configuration),

 (c) Record the internal review processes that accepted the new releases,

 (d) Be supported throughout the full duration of the virtual model utilization
2. Releases management

10. It is recommended that any toolchain’s version used to release data for certification purposes should be stored. The virtual models constituting the testing tool should be documented in terms of the corresponding validation methods and acceptance thresholds to support the overall credibility of the toolchain. The developer should establish and enforce a method to trace generated data to the corresponding toolchain version.

11. Quality check of virtual data. Data completeness, accuracy, and consistency are ensured throughout the releases and lifetime of an tool or toolchain to support the verification and validation procedures.

3. Team’s Experience and Expertise.

12. Even though Experience and Expertise (E&E) are already covered in a general sense within an organization, it is important to establish the basis for confidence on the specific experience and expertise for M&S activities.

13. In fact, the credibility of M&S depends not only on the quality of the simulation models but also on the E&E of the personnel involved in the validation and usage of the M&S. For instance, a proper understanding of the limitations and validation domain will prevent from possible misuse of M&S or from misinterpretation of its results.

14. In this perspective, important to establish the basis for the ADS manufacturer’s confidence on the experience and expertise of:

 (a) The teams that will validate the simulation toolchain and,

 (b) The teams that will use the validated simulation for the execution of virtual testing with the purpose of validating the ADS.

15. Thus, if a team’s E&E is good it increases the level of confidence and hence the credibility of M&S and its outcomes by ensuring that the human factors behind the M&S are taken into consideration and any possible human component risk is controlled, as expected, through its Management System.

16. If the ADS manufacturer's toolchain incorporates or relies upon inputs from organizations or products outside of the manufacturer's own team, it is recommended that the ADS manufacturer will include an explanation of measures it has taken to manage and develop confidence in the quality and integrity of those inputs.

17. The team’s Experience and Expertise include two aspects:

 (a) Organizational level:

 18. The credibility is established by setting up processes and procedures to identify and maintain the skills, knowledge, and experience to perform M&S activities. The following processes should be established, maintained and documented:

 (a) Process to identify and evaluate the individual’s competence and skills;

 (b) Process for training competent personnel to perform M&S-related duties

 (b) Team level:

 19. Once a toolchain has been finalized, its credibility is mainly dictated by the skills and knowledge of the individual/team that will validate the M&S and will use it for the validation of ADS. The credibility is established by documenting that these teams have received adequate training to fulfil their duties.

20. The ADS manufacturer should then:

 (a) Provide the basis for the ADS manufacturer’s confidence in the Experience and Expertise of the individual/team that validates the M&S toolchain.

 (b) Provide the basis for the ADS manufacturer’s confidence in the Experience and Expertise of the individual/team that uses the simulation to execute virtual testing with the purpose of validating the ADS.
21. The ADS manufacturer’s demonstration of how it applies the principles of its Management Systems, e.g. ISO 9001 or a similar best practice or standard, with regard to the competence of its M&S organization and the individuals in that organization, will provide the necessary basis for this determination. It is recommended that the assessor not substitute its judgment for that of the ADS manufacturer with regard to the experience and expertise of the organization or its members.

4. Data/Input pedigree

22. The data/input pedigree contains a record of traceability about the ADS manufacturer’s data used in the validation of the M&S.

(a) Description of the data used for the M&S validation

(a) The ADS manufacturer should document the data used to validate the models included in the tool or toolchain and note important quality characteristics;

(b) The ADS manufacturer should provide documentation showing that the data used to validate the models covers the intended functionalities that the toolchain aims at virtualizing;

(c) The ADS manufacturer should document the calibration procedures employed to fit the virtual models’ parameters to the collected input data.

(b) Effect of the data quality (e.g. data coverage, signal to noise ratio, and sensors’ uncertainty/bias/sampling rate) on model parameters uncertainty

23. The quality of the data used to develop the model will have an impact on model parameters’ estimation and calibration. Uncertainty in model parameters will be another important aspect in the final uncertainty analysis.

5. Data/Output pedigree

24. The data/output pedigree contains a record of the M&S outputs used for the ADS validation.

(a) Description of the data generated by the M&S

(a) The ADS manufacturer should provide information on any data and scenarios used for virtual testing toolchain validation.

(b) The ADS manufacturer should document the exported data and note important quality characteristics e.g. using the correlation methodologies as defined Annex II.

(c) The ADS manufacturer should trace M&S outputs to the corresponding simulation setup:

(i) Effect of the data quality M&S credibility

(a) The M&S output data should be sufficient to ensure the correct execution of the validation computation. The data should sufficiently reflect the ODD relevant to the virtual assessment of the ADS.

(b) The output data should allow consistency/sanity check of the virtual models via possibly exploiting redundant information

(ii) Managing stochastic models

(a) Stochastic models should be characterized in terms of their variance

(b) The use of a stochastic models should not prohibit the possibility of deterministic re-execution
B. M&S Analysis and Description

25. The M&S analysis and description aim to define the whole toolchain and identify the parameter space that can be assessed via virtual testing. It defines the scope and limitations of the models and tools and the uncertainty sources that can affect its results.

1. General description
 (a) ADS manufacturer should provide a description of the complete toolchain along with how the simulation data will be used to support the ADS validation strategy.
 (b) The ADS manufacturer should provide a clear description of the test objective.

2. Assumptions, known limitations and uncertainty sources:
 (a) The ADS manufacturer should motivate the modelling assumptions which guided the design of the M&S toolchain
 (b) The ADS manufacturer should provide evidence on:
 (i) How the manufacturer-defined assumptions play a role in defining the limitations of the toolchain;
 (ii) The level of fidelity required for the simulation models.
 (c) The ADS manufacturer should provide justification that the tolerance for simulation to real-world correlation is acceptable for the test objective
 (d) Finally, this section should include information about the sources of uncertainty in the model. This will represent an important input to final uncertainty analysis, which will define how the model outputs can be affected by the different sources of uncertainty of the model used.

3. Scope (what is the model for?). It defines how the M&S is used in the ADS validation.
 (a) The credibility of virtual tool should be enforced by a clearly defined scope for the utilization of the developed models.
 (b) The matured M&S should allow a virtualization of the physical phenomena to a degree of accuracy which matches the fidelity level required for certification. Thus, the M&S will act as a “virtual proving ground” for ADS testing.
 (c) Simulation models need dedicated scenarios and metrics for validation. The scenario selection used for validation should be sufficient such that there is confidence that the toolchain will perform in the same manner in scenarios that were not included in the validation scope.
 (d) ADS manufacturers should provide a list of validation scenarios together with the corresponding parameter description limitations.
 (e) ODD analysis is a crucial input to derive requirements, scope and effects that the M&S must consider to support ADS validation.
 (f) Parameters generated for the scenarios will define extrinsic and intrinsic data for the toolchain and the simulation models.

4. Criticality assessment
 26. The simulation models and the simulation tools used in the overall toolchain should be investigated in terms of their impact in case of a safety error in the final product. The proposed approach for criticality analysis is derived from ISO 26262, which requires qualification for some of the tools used in the development process. In order to derive how critical the simulated data is, the criticality assessment considers the following parameters:
 (a) The consequences on human safety e.g. severity classes in ISO 26262.
 (b) The degree in which the simulated results influence’s the ADS.
27. The table below provides an example criticality assessment matrix to demonstrate this analysis. ADS manufacturers may adjust this matrix to their particular use case.

Table 1

<table>
<thead>
<tr>
<th>Influence on ADS</th>
<th>Significant</th>
<th>Moderate</th>
<th>Minor</th>
<th>Negligible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A</td>
<td>Perform degraded mode within reduced system constraints</td>
<td>Predict the future behaviour of other actors</td>
<td>Perceive relevant static and dynamic objects in the proximity of the ADS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determine its location</td>
<td>Safe management of transitions of control</td>
<td>Determine if specified nominal performance is not achieved</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strategic control of the ADS by the User</td>
<td>Communicate and interact with other road users</td>
<td>Safe management of transitions of control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>User interaction with HMI</td>
<td>User informed about operational status</td>
<td>N/A</td>
</tr>
</tbody>
</table>

28. From the perspective of the criticality assessment, the three possible cases for assessment are:

(a) Those models or tools that are clear candidates for following a full credibility assessment;
(b) Those models or tools that may or may not be candidates for following the full credibility assessment at the discretion of the assessor;
(c) Those models or tools that are not required to follow the credibility assessment.

C. Verification

29. The verification of M&S deals with the analysis of the correct implementation of the conceptual/mathematical models that create and build up the overall toolchain. Verification contributes to the M&S’s credibility via providing assurance that the individual tools will not exhibit unrealistic behaviour for a set of inputs which cannot be tested. The procedure is grounded in a multi-step approach described below, which includes code verification, calculation verification and sensitivity analysis.
1. **Code verification**

30. Code verification is concerned with the execution of testing that demonstrates that no numerical/logical flaws affect the virtual models.

 (a) The ADS manufacturer should document the execution of proper code verification techniques, e.g. static/dynamic code verification, convergence analysis and comparison with exact solutions if applicable.4

 (b) The ADS manufacturer should provide documentation showing that the exploration in the domain of the input parameters was sufficiently wide to identify parameter combinations for which the M&S tools show unstable or unrealistic behaviour. Coverage metrics of parameters combinations may be used to demonstrate the required exploration of the model’s behaviours.

 (c) The ADS manufacturer should adopt sanity/consistency checking procedures whenever data allows.

2. **Calculation verification**

31. Calculation verification deals with the estimation of numerical errors affecting the M&S.

 (a) The ADS manufacturer should document numerical error estimates (e.g. discretization error, rounding error, iterative procedures convergence);

 (b) The numerical errors should be kept sufficiently bounded to not affect validation.

3. **Sensitivity analysis**

32. Sensitivity analysis aims at quantifying how model output values are affected by changes in the model input values and thus identifying the parameters having the greatest impact on the simulation model results. The sensitivity study also provides the opportunity to determine the extent to which the simulation model satisfies the validation thresholds when it is subjected to small variations of the parameters, thus it plays a fundamental role to support the credibility of the simulation results.

 (a) The ADS manufacturer should provide supporting documentation demonstrating that the most critical parameters influencing the simulation output have been identified by means of sensitivity analysis techniques such as by perturbing the model’s parameters;

 (b) The ADS manufacturer should demonstrate that robust calibration procedures have been adopted and that this has identified and calibrated the most critical parameters leading to an increase in the credibility of the developed toolchain.

 (c) Ultimately, the sensitivity analysis results will also help to define the inputs and parameters whose uncertainty characterization needs particular attention to characterize the uncertainty of the simulation results.

4. **Validation**

33. The quantitative process of determining the degree to which a model or a simulation is an accurate representation of the real world from the perspective of the intended uses of the M&S. Examples of virtual toolchain validation are reported in Annex 3 - Appendix 3. It is recommended that the following items be considered when assessing the validity of a model or simulation:

(a) **Measures of Performance (metrics)**

(a) The Measures of Performance are metrics that are used to compare the outputs of the virtual testing tool with real world performances. The Measures of Performance are defined during the M&S analysis.

(b) Metrics for validation may include:

(i) Discrete value analysis e.g. detection rate, firing rate;

(ii) Time evolution e.g. positions, speeds, acceleration;

(iii) Analysis of state changes e.g. distance/speed calculations, TTC calculation, brake initiation.

(b) **Goodness of Fit measures**

(a) The analytical frameworks used to compare real world and simulation metrics are generally derived as Key Performance Indicators (KPIs) indicating the statistical comparability between two sets of data.

(b) The validation should show that these KPIs are met.

(c) **Validation methodology**

(a) The ADS manufacturer should define the logical scenarios used for virtual testing toolchain validation. They should be able to cover to the maximum possible extent the ODD of virtual testing for ADS validation.

(b) The exact methodology depends on the structure and purpose of the toolchain. The validation may consist of one or more of the following:

(i) Validate Subsystem models e.g. environment model (road network, weather conditions, road user interaction), sensor models (Radio Detection And Ranging (RADAR), Light Detection And Ranging (LiDARs), Camera), vehicle model (steering, braking, powertrain);

(ii) Validate vehicle system (vehicle dynamics model together with the environment model);

(iii) Validate sensor system (sensor model together with the environment model);

(iv) Validate integrated system (sensor model + environment model with influences form vehicle model).

(d) **Accuracy requirement**

34. Requirement for the correlation threshold is defined during the M&S analysis. The validation should show that these KPIs are met. e.g. using the correlation methodologies as defined in Annex II.

(e) **Validation scope (what part of the toolchain to be validated)**

35. A toolchain consists of multiple tools, and each tool will use several models. The validation scope includes all tools and their relevant models.

(f) **Internal validation results**

(a) The documentation should not only provide evidence of the M&S validation but also should provide sufficient information related to the processes and products that demonstrate the overall credibility of the toolchain used.

(b) Documentation/results may be carried over from previous credibility assessments.

(g) **Independent Validation of Results**

36. The assessor should audit the documentation provided by the manufacturer and may carry out tests of the complete integrated tool. If the output of the virtual tests does not
sufficiently replicate the output of physical tests, the assessor may request that the virtual and/or physical tests to be repeated. The outcome of the tests will be reviewed and any deviation in the results should be reviewed with the manufacturer. Sufficient explanation is required to justify why the test configuration caused deviation in results.

(h) Uncertainty characterisation

37. This section is concerned with characterizing the expected variability of the virtual toolchain results. The assessment should be made up of two phases. In a first phase the information collected from the “M&S Analysis and Description” section and the “Data/Input Pedigree” are used to characterise the uncertainty in the input data, in the model parameters and in the modelling structure. Then, by propagating all of the uncertainties through the virtual toolchain, the uncertainty of the model results is quantified. Depending on the uncertainty of the model results, proper safety margins will need to be introduced by the ADS manufacturer in the use of virtual testing as part of the ADS validation.

(i) Characterization of the uncertainty in the input data

38. The ADS manufacturer should demonstrate they have estimated the model’s critical inputs by means of robust techniques such as providing multiple repetitions for the assessment of the quantity;

(ii) Characterization of the uncertainty in the model parameters (following calibration).

39. The ADS manufacturer should demonstrate that when a model’s critical parameters cannot be fully determined they are characterized by means of a distribution and/or confidence intervals;

(iii) Characterization of the uncertainty in the M&S structure

40. The ADS manufacturer should provide evidence that the modelling assumptions are given a quantitative characterization by assessing the generated uncertainty (e.g. comparing the output of different modelling approaches whenever possible);.

(iv) Characterization of aleatory vs. epistemic uncertainty

41. The ADS manufacturer should aim to distinguish between the aleatory component of the uncertainty (which can only be estimated but not reduced) and the epistemic uncertainty deriving from the lack of knowledge in the virtualization of the process.

III. Documentation structure

42. This section will define how the aforementioned information will be collected and organized in the documentation provided by the ADS manufacturer to the relevant authority.

(a) The ADS manufacturer should produce a document (a “simulation handbook”) structured using this outline to provide evidence for the topics presented;

(b) The documentation should be delivered together with the corresponding release of the toolchain and appropriate supporting data;

(c) The ADS manufacturer should provide clear reference that allows tracing the documentation to the corresponding parts of the toolchain and the data;

(d) The documentation should be maintained throughout the whole lifecycle of the toolchain utilization. The assessor may audit the ADS manufacturer through assessment of their documentation and/or by conducting physical tests.
Annex IV

List of occurrences recommended for reporting

43. Short term reporting is expected to be submitted for each critical occurrence. Periodic reporting is expected to be submitted in the form of aggregated data (per hour of operation or driven km) for ADS-vehicle type and related to ADS operation (i.e., when ADS is activated). If the manufacturer does not have access to complete operational information, it should agree how to proceed with the authority.

44. The following is a list of occurrences that have been derived from the ADS safety requirements set by FRAV. It is recommended that these form the basis of the reporting requirements. The occurrences have been subdivided into three categories, based on their relevance to the DDT, to the interaction with ADS vehicle users, and to ADS technical conditions. For each occurrence, its relevance to the short-term and/or periodic reporting has been flagged in the table below.

I. Occurrences related to ADS performance of the DDT, such as:
 (a) Safety critical occurrences (as defined above) known to the ADS manufacturer or OEM;
 (b) Occurrences related to ADS operation outside its ODD;
 (c) ADS failure to achieve a minimal risk condition when necessary;
 (d) Communication-related occurrences (where connectivity is relevant to the ADS safety concept);
 (e) Cybersecurity-related occurrences;
 (f) Interaction with remote control centre (if applicable) related to major ADS or vehicle failures.

II. Occurrences related to ADS interaction with ADS vehicle users, such as:
 (a) Driver unavailability (where applicable) and other user-related occurrences (e.g. user errors, misuse, misuse prevention);
 (b) Occurrences related to Transfer of Control failure (reason, share compared to completed TOC);
 (c) Prevention of takeover under unsafe conditions.

III. Occurrences related to ADS technical conditions, including maintenance and repair:
 (a) Occurrences related ADS failure resulting in a request to intervene;
 (b) Maintenance and repair problems;
 (c) Occurrences related to unauthorized modifications (i.e. tampering);
 (d) Modifications made by the ADS manufacturer or OEM to address an identified and significant ADS safety issue (with appropriate protections for related IP).
IV. Occurrences related to the identification of new safety-relevant scenarios

Table 1

Occurrences related to the identification of new safety-relevant scenarios

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Short-term reporting [1 Month]</th>
<th>Periodic Reporting [1 Year]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.a. Safety critical occurrences known to the ADS manufacturer or OEM</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(in case of unreasonable risk)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.b. Occurrences related to ADS operation outside its ODD</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.c. ADS failure to achieve a minimal risk condition when necessary</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.d. Communication-related occurrences</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1.e. Cybersecurity-related occurrences</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1.f. Interaction with remote operator if applicable</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2.a. Driver unavailability (where applicable) and other user-related</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>occurrences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.b. Occurrences related to Transfer of Control failure</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2.c. Prevention of takeover under unsafe conditions</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.a. Occurrences related ADS failure</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.b. Maintenance and repair problems</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.c. Occurrences related to unauthorized modifications</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.d. Modifications made by the ADS manufacturer or OEM to address an</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>identified and significant ADS safety issue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Occurrences related to the identification of new safety-relevant</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>scenarios</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annex V

Outline of the approach for the testing methods for track testing and real world testing

I. Introduction

1. An initial overview of best practices, procedures, technical resources and tools related to track testing and real world testing was prepared.5

2. The overview showed that numerous test procedures and standards for track testing have been developed and used to assess the safety of vehicles with automated driving systems (e.g. ALKS) and particularly with advanced driver assistance systems, which can serve as input to the to-be-developed track testing methodology.

3. The overview furthermore showed that no test procedure to assess the safety of vehicles with automated driving systems on public roads has been developed yet6, with most of the available documentation concerning guidance or specifications on testing (i.e. trails) such vehicles by OEMs during the developmental stages of their systems, or the testing of human drivers.

4. This annex outlines the suggested approach for the track testing and real world testing methods: test matrices. Consideration and recommendations on the next steps for the development of the testing methods are provided in Annex VI.

II. The test matrixes

5. The starting point for the development of the methods for track testing and real world testing is the test matrix approach. This approach recommends the use of one general matrix for physical testing, as well as two test matrixes specifically designed for respectively track testing and real world testing.

6. The purpose of the general matrix for physical testing would be to provide a clear overview of how the respective safety performance requirements set by FRAV could be assessed using track testing, real world testing, or both.7

7. The test matrixes for respectively track testing and real world testing would differ in design, in order to take into account the different settings in which the tests are conducted, as well as to ensure that the strengths of each testing method can be utilized.

Please note that the example test matrixes set out in this annex are merely illustrative and therefore include mock-up criteria.

A. The general matrix for physical testing

8. The general matrix would provide a clear overview of the type or types of physical testing to be used for assessing compliance with the applicable safety requirements set by FRAV.

5 Working paper VMAD-SG4-06-05
6 UN Regulation No. 157 on automated lane keeping systems (ALKS) provides provisions for a real world test. For the purpose of developing the NATM’s real world test, these provisions are however not detailed enough to be regarded as specifications including a procedure.
7 This general matrix for physical testing would only include applicable safety performance requirements suitable for physical testing, excluding those that are only to be assessed using other pillars of the NATM. Should VMAD decide to establish a general overview at VMAD/NATM level setting out which pillar/pillars should be used to assess compliance with the respective safety performance requirements set by FRAV, then this general matrix for physical testing could be integrated into such overview.
9. The example in table VII.1 illustrates the basic concept for the overview based on (a selection of) the initial 40 safety topics drafted by FRAV. Please note that the example is merely illustrative and should not be regarded as VMAD’s position on the applicability of each test method per safety topic.

10. Moreover, the example does not take into account any further development on the safety topics by FRAV since the 18th VMAD meeting. The safety topics are furthermore expected to be set out in more detail in the future, each topic containing one of more measurable requirements.

11. It is envisaged that, once developed, these measurable requirements would be listed in the left column of the table instead of the currently listed safety topics.

Table 1
Example of the General Matrix for Physical Testing

<table>
<thead>
<tr>
<th>(FRAV) Safety Requirement</th>
<th>Track Testing</th>
<th>Real World Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The ADS should perform the entire Dynamic Driving Task.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2. The ADS should control the longitudinal and lateral motion of the vehicle.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(...)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. The ADS should adapt its behaviour in line with safety risks.</td>
<td>Yes</td>
<td>If encountered</td>
</tr>
<tr>
<td>8. The ADS should adapt its behaviour to the surrounding traffic conditions.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>(...)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30. The ADS should safely manage short-duration ODD exits.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>31. Pursuant to a collision, the ADS should stop the vehicle and deactivate.</td>
<td>Yes</td>
<td>If encountered</td>
</tr>
<tr>
<td>(...)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12. ‘If encountered’, as used in the table above, would indicate that real world testing would not seek to assess the respective safety requirement, generally due to the undesirability from a safety perspective to assess such requirements on public roads. However, given that random traffic situations are encountered during real world testing, such traffic situations could organically occur and in this case, the performance with regards to the specific requirement should be assessed. The testing safety on public roads should also be taken into account, which the assessor or the driver should ensure and they should therefore take over the driving task if needed.

13. VMAD’s SG4 will elaborate in a next step on how the assessment of such ‘if encountered’ occurrences should be integrated in the testing method for real world testing, e.g. whether they would be included in the test matrix or whether the testing protocols would provide guidance/instructions on how assessors are expected to handle such cases.

14. Instead of ‘Yes’ and ‘If encountered’, the table could also be structured to already provide more information on the intended purpose/aim of the test. For example:

Table 2
Example of another structure for the general matrix for physical testing

8 As set out in working paper VMAD-18-03.
XX. The ADS should respond safely to the cut-in of another vehicle.

Verification of the ADS crash-avoidance response to a dangerous cut in.

Nominal verification that the ADS adapts the vehicle positioning in response to the cut in. Verification of the ADS crash-avoidance response to a dangerous cut in, if encountered.

B. The test matrix for track testing

15. The left column of the test matrix for track testing would refer to scenarios developed by VMAD’s SG1, which VMAD’s SG4 anticipates would include the traffic situation, infrastructure elements, objects, ODD elements, etc.

16. The safety requirement(s) column would cross-reference the applicable safety requirement(s), to be set out by FRAV, that would be assessed in the respective scenario. VMAD’s SG4 anticipates that FRAV would provide requirements enabling determinations of the pass/fail criteria, which would in turn be set out in the assessment specification column.

17. If applicable, the additional test specification column would allow for any additional conditions or parameters to be specified, which were/could not be described in either the traffic scenario or the safety requirement(s), but which are necessary in order to conduct the track test (e.g. minimum duration of the test).

18. Please note that the example matrix on the next page is merely meant to illustrate the envisaged structure. The content provided is therefore intentionally non-specific and should not be regarded as VMAD’s position on the suitability of using track testing to assess the listed safety requirements.

19. The eventual scenarios, safety requirement(s) and assessment specifications are to be sourced from respectively VMAD’s SG1 and FRAV, with any additional test specifications to be added based on discussions within VMAD’s SG4.
Table 3
Example of a test matrix for track test

<table>
<thead>
<tr>
<th>Traffic Scenario</th>
<th>Safety Requirement(s)</th>
<th>Additional Test Specifications</th>
<th>Assessment Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>This column would cross-reference the testing with the scenario upon which the testing is based. VMAD’s SG4 anticipates that the scenarios would cover the traffic situation, infrastructure elements, objects, ODD elements, etc.</td>
<td>This column would cross-reference the testing with the safety requirements relevant to the traffic scenario. SG4 anticipates that FRAV would provide requirements enabling determinations of the pass/fail criteria, to be set out in the assessment specification column.</td>
<td>This column would complement the description of the traffic scenario with additional information or parameters necessary for conducting the track test, if applicable.</td>
<td>This column would set out the assessment specification.</td>
</tr>
</tbody>
</table>

The following examples illustrate the concept of the matrix for track testing. VMAD’s SG4 has intentionally provided non-specific examples. The scenarios and safety requirements would be sourced from VMAD’s SG1 and FRAV. The matrix would evolve in line with progress of these activities.

<table>
<thead>
<tr>
<th>Traffic Scenario</th>
<th>Safety Requirement(s)</th>
<th>Additional Test Specifications</th>
<th>Assessment Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unobstructed travel on a straight path</td>
<td>• Safe lateral positioning in a lane of travel</td>
<td>• A minimum test duration of 5 minutes</td>
<td>The test shall demonstrate that the ADS does not leave its lane and maintains a stable position inside its ego lane across the speed range within its system boundaries.</td>
</tr>
<tr>
<td>Unobstructed travel along a curve</td>
<td>• Safe lateral positioning in a lane of travel</td>
<td>• A minimum test duration of 5 minutes</td>
<td>The test shall demonstrate that the ADS does not leave its lane and maintains a stable position inside its ego lane across the speed range and different curvatures within its system boundaries.</td>
</tr>
<tr>
<td>Cut-in by another vehicle while traveling on a straight path</td>
<td>• Respond safely to the cut-in • Safe longitudinal positioning relative to a lead vehicle</td>
<td>• Scenario with selected parameters to verify the ADS crash-avoidance response to a dangerous cut in per the safety requirements⁹</td>
<td>The test shall demonstrate that the ADS is capable of avoiding a collision with a vehicle cutting into the lane of the ADS vehicle up to a certain criticality of the cut-in manoeuvre.</td>
</tr>
<tr>
<td>ODD exit scenario</td>
<td>• ADS detection of ODD boundary • Automated response (if failed fallback user response or no fallback user)</td>
<td>• Test for failed fallback user response</td>
<td>The test shall demonstrate that the ADS is capable of bringing the vehicle to a safe stop, in case of a failed fallback user response.</td>
</tr>
</tbody>
</table>

⁹ This inclusion assumes the traffic scenario does not prescribe the (range of parameters to be selected for the) occurrence of a safety-critical situation. If that were to be included in the scenario, this field could be empty.
C. The test matrix for real world testing

20. The left columns would set out the measureable safety requirements to be developed by FRAV.

21. The top rows on the right side would set out the traffic situations required to be encountered during real world testing. Given the dynamic nature of traffic on public roads, it is considered unlikely that traffic situations will occur exactly as described in the traffic scenarios developed by VMAD’s SG1, and these are therefore not referenced in the test matrix. Instead, the traffic situations listed in the second row would be further described in the testing protocols accompanying the test matrix, with the description envisaged be rather general in order to ensure that there is a near certainty of being encountered during real world testing. In order to prevent confusion with the detailed traffic scenarios developed by VMAD’s SG1, they have therefore (provisionally) been titled as “traffic situations” instead.

22. Please note that the five traffic situations set out in the example are merely illustrative.

23. The remaining fields of the matrix represent the assessment specification per safety requirement for the applicable traffic situations, which are to be sourced from FRAV. The assessment specification would summarize the desired performance in one sentence, with a more detailed description of the assessment specification to be set out in the testing protocols accompanying the test matrix, where necessary.

24. The inclusion of an assessment specification would reflect that the respective safety requirement would need to be verified for the respective traffic situation. As an illustration, in the example table’s Row 1.1, the compliance with the safety requirement on lane keeping would have to be verified in all the traffic situations. (Please note that the assessment specifications in the table are merely illustrative and moreover do not reflect VMAD’s position on whether compliance with the safety requirement should be verified in the respective traffic situations for which the mock-up assessment specifications are provided).

25. However, VMAD’s SG4 will further discuss how the “If encountered” situations can be appropriately reflected in the test matrix. This refers on the one hand to the assessment of safety requirements that are undesirable to be conducted on public roads, but which may nevertheless occur.

26. On the other hand, it refers to the assessment of safety requirements (during nominal traffic conditions) that cannot be assured (and therefore required) to be encountered during real world testing, but which may occur. As an illustration, in the example table’s Row 2.1 on the safe response to a cut-in, the table would require the assessment of the ADS’ response to a (nominal) cut-in of another vehicle during real world testing. The ADS’ response to dangerous cut-in would only need to be assessed if encountered during real world testing, as signalled by the addition of ‘*, if applicable.’.

27. For both cases, VMAD’s SG4 will further discuss what the most efficient and clear way would be to signal such ‘Assess if encountered’ requirements. Suggestions made so far include:

 (a) Handling such occurrences completely separate from the test matrix (e.g. only provide guidance/instructions in the testing protocols);
 (b) Including them in the test matrix itself, but signalling their conditionality (e.g. Row 2.2 in the example table. Note in particular the assessment specification

10 Should VMAD’s SG1 develop general scenarios suitable for use in the test matrix for real world testing, VMAD’s SG4 would consider references to those general scenarios instead.

11 It should be possible for the assessor to interrupt the test on public roads, should the situation become dangerous. VMAD’s SG4 will further discuss this topic and may decide to provide guidance in the testing protocols.
for lane changes, where both a required assessment and a conditional ‘if encountered’ assessment are included); (c) Signalling the existing of ‘If encountered’ assessments (e.g. using ‘*’), but setting out the conditional assessment specification as well as guidance/instructions in the testing protocols. (Please note that this latter option has not been illustrated in the example table).

28. Aspects related to routing (e.g. minimum duration, minimum frequency of a given traffic situation encountered during testing, etc.) would be set out in the accompanying test protocols.
Example of a test matrix for real world testing: motorway application

<table>
<thead>
<tr>
<th>Safety Requirements</th>
<th>Traffic Situations</th>
<th>Merging</th>
<th>Lane Change</th>
<th>Overtaking</th>
<th>Exiting Motorway</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Safe lateral positioning in a lane of travel</td>
<td>The ADS demonstrates it does not leave its lane and maintains a stable position inside its ego lane across the speed range within its system boundaries.</td>
<td>The ADS demonstrates it achieves a stable position inside the target lane upon completion of the lane change procedure.</td>
<td>The ADS demonstrates it achieves a stable position inside the target lane upon completion of the lane change procedure.</td>
<td>The ADS demonstrates it achieves a stable position inside the target lane upon completion of the lane change procedure.</td>
<td>The ADS demonstrates it maintains a stable position in the off-ramp lane.</td>
</tr>
<tr>
<td>2.1. Respond safely to the cut-in of another vehicle</td>
<td>The ADS adapts the vehicle positioning in response to the (nominal) cut in. The ADS responds appropriately(^{12}) to a dangerous cut in, if applicable.(^{13})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2. Safe longitudinal positioning relative to a lead vehicle</td>
<td>The ADS demonstrates it maintains a safe longitudinal position relative to a lead vehicle.</td>
<td>The ADS demonstrates it maintains a safe longitudinal position relative to a lead vehicle during and upon the completion of the lane change procedure.</td>
<td>The ADS demonstrates it maintains a safe longitudinal position relative to a lead vehicle prior and during the lane change procedure.</td>
<td>The ADS demonstrates it maintains a safe longitudinal position relative to a lead vehicle prior and during the lane change procedure.</td>
<td>The ADS demonstrates it maintains a safe longitudinal position relative to a lead vehicle, if applicable.</td>
</tr>
</tbody>
</table>

\(^{12}\) What constitutes an ‘appropriate response’ would then be set out in the testing protocols that accompany the test matrix, sourced from FRAV.

\(^{13}\) To be determined whether ‘If encountered’ situations should be included in the matrix itself. Included here, as well as in other parts of the table, as an illustration.
Annex VI

Areas for future work

Scenarios catalogue — updating the catalogue

1. The text below discusses future work that may be conducted to develop and maintain a VMAD scenarios catalogue:
2. If scenarios not covered by the scenario catalogue are identified and deemed necessary, they should be included in the scenario catalogue.
3. It is envisaged that a scenario catalogue will have tags for all scenarios corresponding to their relevant ODD attributes (using a standardised ODD taxonomy) and behaviour competencies.
4. Country specific scenarios should be respected and need to be covered in the scenario catalogue in the long term.
5. The scenario catalogue is not necessarily exhaustive and authorities may need to consider additional scenarios as necessary to support safety validation of an ADS feature. [Such a decision could be based on the ODD and behaviour competencies of the ADS. For example, if an AV is developed with an ODD which is not covered in the scenario catalogue, it is essential to add new scenarios to the catalogue to ensure the scenarios used for testing are a function of the ODD.]

Pillars 2 and 3 — track and real world testing — considerations and next steps

6. The next step in the development of the test methods for track and real world testing (described in Annex V) is populating the test matrices with safety requirements, traffic scenarios/traffic situations and the assessment specifications. However, it will merely be the first of several steps before the test matrix approach as such could be used as an assessment method.
7. This section therefore outlines the next steps that are required in order to operationalize the test matrixes approach, together with some initial considerations.

A. Populating the test matrix

8. In order to be able to advance with the development process of the test matrixes testing method, it is first necessary to populate the test matrixes with requirements, scenarios and assessment specifications. This is because most, if not all of the subsequent steps depend largely on the content of the matrix itself. For example, without knowing what will be required to be tested and against which criteria, it would difficult, if not impossible, to determine the length and scope of the real world testing aspect.
9. The test matrix would be populated with the requirements and assessment specifications to be developed by FRAV, and for track testing the scenarios developed by VMAD’s SG1 as well. Given that FRAV and VMAD’s SG1 are currently still in the process of developing respectively the requirements and traffic scenarios, SG4’s work on the matrixes themselves will be largely on hold until the requirements and scenarios become available.
10. With regards to the populating the test matrixes in due time, the criteria to be included for testing would be selected in coordination with VMAD and FRAV, whereas the scenarios would be selected in coordination with SG1.
B. Developing the test protocols

11. Once a test matrix has been populated, the accompanying test protocols would be developed by VMAD’s SG4. These test protocols would include, for example, the scope and length of testing, conditions for testing and routing (as far as not provided for by either the criteria or traffic scenario/traffic situation descriptions), as well as other aspects necessary in order for the persons conducting the testing to ensure a harmonized interpretation of the test matrix and protocols as well as in turn to ensure harmonized assessments.

C. Validation of the testing approach

12. The test matrixes and accompanying test protocols first need to be validated during try-outs, in order to ensure that they are indeed providing the desired assessment of the safety of the vehicles with automated driving systems on board. These validations are particularly important for real world testing, as no regulatory framework, procedure, or specification currently exists to assess the safety of the ADS.

13. The validation process will be developed further in a later stage, once (suitable drafts of) the test matrixes and accompanying test protocols have been developed. Questions for consideration during the development of the validation process would include:

 (a) How many test organizations and test vehicles are required?
 (b) How many times would the try-out need to be repeated?
 (c) Who conducts these try-outs?
 (d) Are there a certain number of countries that need to validate the test matrix and test protocols?
 (e) Would each country need to conduct their own try-outs?

Pillar 5 — In-service monitoring and reporting — reporting from other sources

14. The effectiveness of the ISMR pillar will be determined by the availability of data on ADS safety performance. This means that limiting the reporting requirements to manufacturers only would also limit the type of occurrences that can be covered by ISMR, and consequently the level of safety improvement achievable through operational experience feedback. Other transport sectors extend the operational reporting mechanism to other sources including drivers, operators, users, managers, and any other person connected to the vehicle’s operation. Discussion on the possibility of similar extensions requires exchanges between WP.29 and WP.1.

15. For example, occurrences related to traffic rules infringement cannot be covered with only data collected from the vehicle as the expectation is that the ADS will not intentionally infringe the law. Therefore, if it is not aware that it has infringed the law it will not record any data. It may therefore be necessary to consult with other parties, such as local authorities and ADS vehicle’s user(s), as well as the manufacturers to identify and gather data on this category of occurrences.

Pillar 5 — In-service monitoring and reporting — information sharing among safety authorities/contracting parties

16. The final aim of the ISMR pillar is to improve ADS safety through dissemination of lessons learned in the form of safety recommendations. If this information is shared promptly

14 Test parameters should take into account the ODD of the ADS under test.
and widely then it should have an impact at both a national and international level. Safety authorities should have access to such recommendations as well as the reporting from manufacturers, plus other relevant information (e.g., data from highway authorities, crash investigations, research, national statistics, etc.). This should allow them to react to any safety issues associated with ADS deployment.

17. A mechanism to share information across safety authorities at a global level is desirable and could be coordinated by GRVA/VMAD, under WP.29 directions.