

Technical Workshop – UNECE Task Force on Hydrogen **Sustainable Hydrogen Production Pathways in CIS Countries**

23 March 2022

We are starting shortly!

10h00 CET

ENERGY

Technical Workshop – UNECE Task Force on Hydrogen **Sustainable Hydrogen Production Pathways in CIS Countries**

23 March 2022

 $\bigoplus_{\alpha\in\Pi}$ at

Technical Workshop – UNECE Task Force on Hydrogen **Sustainable Hydrogen Production Pathways in CIS Countries**

23 March 2022

ENERGY

Housekeeping rules

下着者

Select your language channel: English, Russian

Mute your microphone if you are not speaking

Switch off your camera if you are not speaking

Use "Raise hand" function to request the floor

Use "Chat" function to ask questions and share comments

Instructions to use interpretation in Zoom

Step 1 - what you see on the screen when you join

Off

 \bullet

English

 \checkmark **D** English

Russian

Mute Original Audio

Ø

Reaction

Step 2 - select the language channel you wish to listen to

For English speakers:

- During session 1 "Sharing current experience from CEM CCUS countries" for better sound quality DO NOT select any language channel and keep default version. This session will be in English.
- During session 2 "CCUS opportunity in UNECE member countries" click on the "Interpretation" button and choose English language.
- The "Interpretation" button will transform into the "English" button. To change again the language you would like to hear, follow the previous procedure by clicking on the transformed button.
	- By default, you will hear the selected language at 80% volume and the original Audio at 20% volume. If you would like to mute/unmute the original audio, click on the corresponding option in the language button.

For Russian speakers:

- Для сессии 1 «Sharing current experience from CEM CCUS countries» и для сессии 2 «CCUS opportunity in UNECE member countries» воспользуйтесь услугами перевода и нажмите кнопку "Interpretation" («Устный перевод») и выберите русский язык.
- Кнопка "Interpretation" («Устный перевод») $\mathcal{L}^{\mathcal{L}}$ превратится в кнопку «Russian» («Русский язык»). Чтобы снова изменить язык, который вы хотели бы услышать, выполните предыдущую процедуру и нажмите преобразованную кнопку Interpretation/ Russian.
- Off **C** English $\sqrt{30}$ Russian Mute Original Audio Ø, **RU** \cdots Russian **Reactions** More
- Обично перевод будет звучать на 80% громкости, а исходный звук на 20%. Если вы хотите отключить / включить исходный звук, нажмите соответствующий параметр на кнопке выбора языка.

Agenda

ENERGY

- **Project update & UNECE work on Hydrogen**
- **Sustainable hydrogen production methods – technology pitch presentations**
	- **Green hydrogen and electrolysis**
	- **Hydrogen from nuclear power**
	- **Hydrogen from natural gas**
	- **Hydrogen from coal**
- **Q&A session with Beneficiary Countries – Discussion on national potential, priorities, identified opportunities and challenges**

ENERGY

- **Effort by 3 Expert Groups** → **Group of Experts on Renewable Energy, Gas and Cleaner Electricity Systems**
- **Carbon neutrality project**
	- **Role of Hydrogen to Attain Carbon Neutrality**
	- **Technology Brief on Hydrogen**
	- **Technology interplay & scenario building**
- **Subregional project on Sustainable hydrogen production pathways in Eastern Europe and Central Asia**
- **Guarantees of Origin for Sustainable Hydrogen**

UNECE Toolkit for Policy Makers to Attain Carbon Neutrality

HYDROGEN VALUE CHAIN

Hydrogen, an innovative solution for achieving carbon neutrality

Project on Sustainable Hydrogen Production Pathways

- **Analysis on hydrogen potential in Eastern Europe & Central Asia**
	- **National potentials to contribute to development of a hydrogen ecosystem**
	- **Priority areas for the development of national hydrogen potential**
	- **Hydrogen production potential in Eastern Europe and Central Asia**
	- **Subregional assessment of cost & technical performance of various hydrogen production pathways**
	- **Opportunities for hydrogen export potential & domestic applications**
- **Workshops:**

ENERGY

- **Technical workshop on priority areas and hydrogen production potential,** March 2022 at Annual Meeting of the Group of Experts on Gas
- **Policy dialogue,** April 2022 at Annual Resource Management Week

Project Governance

ENERGY

下着

不好乐

Sustainable hydrogen production methods – technology pitch presentations

ENERGY

Sustainable hydrogen production methods – technology pitch presentations

- **Green hydrogen and electrolysis, Constantine Levoyannis**
- **Hydrogen from nuclear power, Phil Rogers**
- **Hydrogen from natural gas, Yuriy Melnikov**
- **Hydrogen from coal, Andrew Minchener**

Hydrogen technology catching up on maturity curve

Growth in renewable hydrogen will accelerate with reduced capex for electrolysers

21 countries have published a hydrogen national strategy

Electrolyser capacity commitments by 2030 amount to 38.5 GW

Included countries are the only ones with specific targets for planned electrolyser capacity.

When the target is a range, the median value of that range was used. ¹ Target is provisional and subject to change in the final version of the national H2 strategy.

² Polish target is for low-carbon emission sources, including electrolysers.

Electrolyser technology evolving

Wide proven experience Alkaline electrolysers since 1927 and PEM electrolysers since 1996

Scalable design from <1 to >8,000 kg/day production able to deliver 100+ MW systems

Designed for high volume manufacturing to achieve large scale plants with fossil price quality

Game-changer in industrial decarbonisation Case study: Heroya, Norway

Fully automated and designed according to **lean manufacturing and industry 4.0 principles**

Industrial scale production of most efficient electrolysers in the market, at a **game-changing cost**

Large scale production line, name plate capacity of **more than 500 MW**

Room to expand to **~2 GW** annually

CO² reduction potential in line 1 (pilot) of **1.000,000 tonnes** – with 2 GW, **4-5 million tonnes**

Production for **Nikola and Everfuel** will commence in Q4

Standardization reducing system cost to enable \$1.5/kg

Key drivers for large scale commercialisation & deployment

- One standardised and universally applied certification system classifying the different types of hydrogen with common LCA methodology.
- Flexible and workable rules for the sourcing of renewable electricity from the grid.
- Clear demand signals promoted via regulation e.g.
	- Targets for the use of renewable hydrogen in industry / transport segments.
	- No double grid fees for renewable h2 production.
	- Distance targets for h2 refuelling stations.
- Contracts for difference.
- Developing a broader concept for the use of the term "efficiency". What about system efficiency? Cost-efficiency? Resource efficiency?

Dr Philip Rogers Technology Leader National Nuclear Laboratory, UK

75 YEARS OF ECONOMIC INTEGRATION AND COOPERATION IN THE REGION

- **Nuclear can deliver low carbon hydrogen on a large scale**
- **Low carbon, excellent sustainability**
- **Only feedstock is water**
- **Proven, commercialised technology: today's nuclear with electrolysis**
- **Combing low carbon electricity and heat from nuclear can improve efficiencies and reduce costs**
- **Future technologies could further improve efficiencies and reduce costs**
- **Complimentary to renewables**
- **Diverse supply chains**
- **Improved security of supply**

- **Flexible electricity to grid provided by electrolyser coupling**
- **Off-grid, standalone hydrogen production**

ONECE

- **Cost is highly dependent on financing arrangement**
- **High capacity factor offers high electrolyser utilization**
- **Electrolysers driven by nuclear heat and electricity could be 40% more efficient**
- **Nuclear enabled hydrogen could be equivalent cost to off-shore wind according to UK Government data**
- **Other organisations predict that nuclear could become the lowest cost form of low carbon hydrogen production**

- **UK example:**
	- **Policies are being put in place now to deliver nuclear enabled hydrogen in the 2030's**
	- **Long term thinking drives positive investments that deliver secure, low cost, low carbon energy**
	- **Including nuclear in energy system strategies can unlock carbon neutrality in new ways**
	- **International markets could enable cross border trade of nuclear enabled hydrogen (similar to cross border electricity trades), potentially providing nuclear enabled hydrogen options for countries not seeking domestic nuclear deployment**

«Low-carbon hydrogen from natural gas: global perspective and possibilities for Russia» – the new open study by SKOLKOVO School of Management

- The hydrocarbons role in the hydrogen production according to the international think-tanks forecasts
- *Hydrogen production technologies from fossil fuels*
- *Competitiveness of hydrogen from natural gas: cost, carbon footprint*
- Areas for development: energy policy, investments, individual projects
- **The study will be published in spring 2022**

Hydrogen production technologies from fossil fuels: steam methane reforming with CCUS

- Steam methane reforming by itself (without CCUS) is the most commercially proven technology for large-scale hydrogen production (TRL 11, 10-200 Nm3/h, distributed worldwide)
- Methane in a mixture with water vapor is converted into hydrogen and CO2 - when thermal energy is supplied from the outside (due to the combustion of the methane part)
- A key challenge is to achieve a high proportion (>90%) of CO2 capture across all outlet streams
- in 2021, there were no more than 5 commercial-scale installations with a CO2 capture rate of 60%

Hydrogen production technologies from fossil fuels: autothermal methane reforming with CCUS

- the process does not use air, but oxygen (which requires electricity to produce), and thermal energy is generated inside the reactor, resulting in a single exhaust gas stream with a high concentration of CO2
- Easier to organize CO2 capture
- Autothermal reforming has long been used to produce syngas in the chemical industry
- its use in the production of blue hydrogen will require refinement (ATR c CCUS technical readiness level, according to the IEA $-8-9$)

Hydrogen production technologies from fossil fuels: CCUS as a necessary element for reforming

- to achieve climate goals in the SDS scenario by 2050, CO2 capture and storage should reach 4.6 GtCO2-eq. per year, which is comparable to the scale of the modern oil industry (IEA)
- The peculiarity of CCUS for blue hydrogen is that it is possible to provide the necessary volumes of hydrogen production only with long-term storage of captured CO2 (and not its useful use)
- 20% of the 40 million tons of CO2 captured today is sent to longterm storage - the rest is used for enhanced oil recovery (EOR)
- Cautious attitude of the public and investors VS the need that analytical agencies talk about

UNECE Hydrogen production technologies from fossil fuels: pyrolysis (decomposition) of methane

- conversion of methane to hydrogen and solid carbon without direct CO2 emissions. The process proceeds at high temperatures (more than 800 °C; the optimum level for a non-catalytic process is 1100- 1300 °C)
- Pyrolysis technologies have long been used to produce carbon black (hydrogen is a by-product, its quality is not regulated)
- the problem of useful use or long-term storage of emitted carbon (the world carbon market is 16 million tons, which corresponds to 5 million tons of hydrogen from pyrolysis)
- The IEA rates the average TRL of pyrolysis technologies in the range of 3 to 6, so there are no reliable cost estimates for them yet.

Comparison of technologies by energy and resource intensity

Source: Energy Centre, SKOLKOVO School of Management (2022)

OUNECE

Comparison of technologies by carbon footprint

- CCUS reforming and pyrolysis provide a low carbon footprint under certain conditions (methane emissions are an important factor)
- Electrolysis provides a low carbon footprint only when using renewables and nuclear power plants
- Carbon footprint needs to be certified

Source: Energy Centre, SKOLKOVO School of Management (2022)

UNECE

Intermediate findings

- Steam methane reforming is the most commercially developed technology for large-scale hydrogen production. Requires integration with CCUS (including through autothermal reforming)
- The scope and effectiveness of CCUS needs to be scaled up
- Pyrolysis is a promising technology, but there are issues with technological readiness, scaling, cost and carbon utilization
- Hydrogen from natural gas can be low-carbon under certain conditions and its certification

Coal to Hydrogen

Dr Andrew Minchener, General Manager International Centre for Sustainable **Carbon**

75 YEARS OF ECONOMIC INTEGRATION AND COOPERATION IN THE REGION

PRESENTATION OUTLINE

- . Who we are and what we do
- · Current hydrogen markets
- Hydrogen production
- Costs and emissions comparisons
- Strategies and supporting policies
- Regional context

INTERNATIONAL CENTRE FOR SUSTAINABLE CARBON

Technology Collaboration Programme by lea

Disclaimer: Views, findings and publications of the International Centre for Sustainable Carbon do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries.

DR ANDREW MINCHENER OBE

General Manager

INTERNATIONAL CENTRE FOR SUSTAINABLE CARBON

Technology Collaboration Programme by lea

• We are dedicated to providing independent information and analysis on how biomass, coal and other carbon sources can become cleaner sources of energy, compatible with the UN Sustainable Development Goals

- The International Centre for Sustainable Carbon (ICSC) is part of a network of autonomous collaborative partnerships focused on a wide range of energy technologies known as Technology **Collaboration Programmes (TCPs)**
- The TCPs are organised under the auspices of the International Energy Agency (IEA) but are functionally and legally autonomous
- We are funded by national governments (contracting parties) and by corporate industrial organisations (sponsors)

Current Hydrogen Markets

• Coal currently accounts for 27% of hydrogen demand

Breakdown of Hydrogen Demand

- Where it is the only viable decarbonisation alternative
- Where is could become the preferred decarbonisation solution in the future

Reasonably uniform potential spread across sectors

Forecast increase in global hydrogen demand (EJ) through to 2050 (Hydrogen Council, 2017)

Coal to Hydrogen Production via Gasification

- Gasification process used where coal is heated at high temperature, typically with oxygen to produce syngas
- Syngas then 'upgraded' through water gas shift (WGS) reaction
	- $CO + H₂O \rightarrow CO₂ + H₂$
- $CO₂$ next captured using physical adsorption techniques of Selexol/ Rectisol
- 99.8% purity hydrogen achieved with pressure swing absorption (PSA)

UNECE

 $\left(\mathbb{C}\right)$

Coal to Hydrogen Production with CCUS

OUNECE

Coal Gasification to Hydrogen HESC Project

- Hydrogen Energy Supply Chain (HESC) project in Victoria State with support from Japan
- AU\$ 500 million (US\$ 390 million) project supported by Japanese government/ industry, with Australian and Victorian governments
- Lignite gasification plant at LaTrobe Valley, Australia
- The pilot phase will produce 5 ktH₂/y which is planned to increase to 10 MtH₂/y by 2030, together with 125 MtCO_2 /y of storage
- Key project challenge is cyogenic H_2 shipping to Kobe

Hydrogen Cost

Comparison of $H₂$ costs (USDOE, 2020)

- Costs vary due to local factors, fuel price, renewable electricity, load factor, learning rates and carbon taxes
- H2 from coal gasification with CCUS as low as US\$1.6/kg to US\$2.4/kg

(C)

UNECE

Emissions comparison

• Carbon intensity of H_2 from coal with CCUS (90% capture) can be limited to $3 \text{ kgCO}_2/\text{kgH}_2$

• Higher capture rate of co-firing with biomass/waste can reduce intensity further

CO2 intensity of H₂ production (IEA, 2019)

Hydrogen strategies

Number of countries producing H_2 strategies/ roadmaps and the scale of ambition is increasing

· Australia, Austria, Belgium, China, EU, France, Germany, Italy, Japan, Korea, The Netherlands, Norway, UK, USA

Example: Australia

- Published strategy in Nov 2019
- AU\$370m committed
- Council of Australian Government's Energy Council established Hydrogen Project Team in March 2020
- CSIRO published technical roadmap for hydrogen in Australia

Supporting policy actions IEA 2019

Policy actions to 2030

- Establish longer term signals to promote investor confidence
- Stimulate commercial demand
- Mitigate first mover risk
- Promote R&D and knowledge share
- Harmonise standards and remove barriers

Deployment at scale in clusters

• Examples: Zero Carbon Humber, Porthos, Northern Lights, HyNet

UNECE

Conclusions

- 115 MtH₂/y global demand in 2018, was produced local to point of use, almost entirely from fossil fuels
- Forecast up to 650 MtH₂/y by 2050, representing around 14% of the expected world total energy demand in 2050
- Coal gasification with CCUS costs 1.9-2.4 US\$/kgH₂ and as low as US\$ 1.6/kgH₂ in China
- CCUS can reduce carbon intensity to <3 kgCO₂/kgH₂
	- Explore further reduction with near 100% capture or cofire with waste/biomass for zero or negative emissions
	- help to 'future proof' the gasification plant
- Near term actions are required to overcome barriers and reduce costs

Sinopec Refinery, China

- Central Asia republics need to expand infrastructure as part of an energy transition
- . In many cases, strong wind sources can support power projects, currently coal fired
- Coal and other fossil fuels are available and are traded between Central Asian Republics. Significant scope to produce tradable hydrogen from coal via gasification with CCUS route.
- Kazakhstan seen as a key regional driver for this approach with significant coal deposits
- Tajikistan may pursue this approach

Technology Collaboration Programme bylea

Dr Andrew Minchener Andrew.Minchener@icscarbon.org

Discussion on national potential, priorities, identified opportunities and challenges

ENERGY

Dialogue with project beneficiary countries:

• **Kazakhstan**

行常市

- **Uzbekistan**
- **Kyrgyzstan**
- **Tajikistan**
- **Turkmenistan**
- **Armenia**
- **Moldova**
- **Azerbaijan**
- **Belarus**

Sustainable Energy Division UNECE

Date 23 | 03 | 2022, Geneva Iva Brkic, Project Lead, **Iva.Brkic@un.org**

