

Measurement framework and SDGs

Measurement scope of the circular economy and the role of SEEA

Roel Delahaye (r.delahaye@cbs.nl)
Statistics Netherlands
Environmental Accounts
31-03-2022

Outline

- 1. CE measurement framework in the Netherlands
- 2. Role of SEEA
- 3. Relation with the SDGs

Measurement framework Circular Economy

Dutch CE framework consist of two core elements:

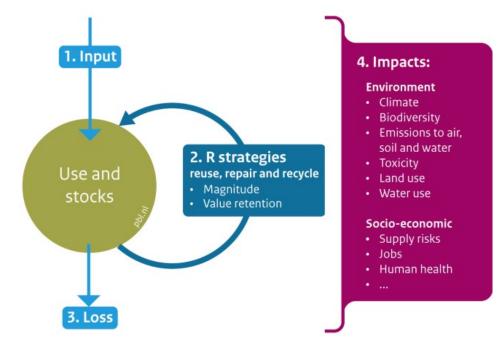
- 1) Transition process: Actions and transition dynamics
- 2) Material use and intended impacts

Transition and monitoring Circular Economy

Various activities that pave the way for intended effects.

For example:

- Number of circular firms
- Number of scientific publications
- Financial resources for CE
- Education programs on CE
- Changes government regulations


Transition and monitoring Circular Economy

Monitoring progress of the transition towards a circular economy for the Netherlands is derived from a broad set of indicators.

Three phases:

- Input
- Output
- Flows within economy R strategies

Framework for targets and indicators of circular economy monitoring

Source: PBL

Role of SEEA

Role of SEEA I:

Key indicators in Integral Circular Economy Report (ICER) for the Netherlands

ndicator		Magnitude				Compared with EU-27	
	2010	2016	2018	2010- 2018	2016- 2018	per capita in 2018	
latural resources required							
Naterial resources for domestic use, DMC' (Mt)	195	193	195	0%	1%	-22%	
Naterial resource footprint domestic use, RMC² (Mt)**	-	-	-	-	-	-	
esource efficiency (GDP in EUR/kilo DMC)	3	4	4	12%	5%	+125%	
Naterial resources for the economy, DMI ³ (Mt)	401	402	397	-1%	-1%	+95%	
Naterial resource footprint of the economy, RMI4 (Mt)	597	627	647	8%	3%	+89% (2017)	
hare bio-based resources (kilo/DMI, in %)	24	25	26	8%	5%	+5%	
otal sustainable renewable material resources (kilo/DMI)	-	-	-	-	-	-	
hare secondary materials, CMUR (kilo secondary/DMI, in %)	-	13	14	-	6%	+167% (2017)	
lse phase							
ifespan	-	-	-	-	-	-	
alue retention	-	-	-	-	-	-	
Vaste processing and recovering							
outch waste (Mt)	60	60	61	2%	2%	+44% (2016)	
hare recycled waste in processed waste (recycled waste/waste, in %)	81 (2012)	79 (2012)	80	-1%*	+1%	+31%	
Vaste recycled in the Netherlands (Mt)	54 (2012)	52	53	-1%*	3%	+111% (2016)	
ncinerated waste in the Netherlands (Mt)	10 (2012)	10	11	11%*	6%	+74% (2016)	
andfilled waste in the Netherlands (Mt)	2	3	3	51%	14%	-81% (2016)	
ffects							
nvironmental impact							
lational greenhouse gas emissions (MtCO₂ eq)	214	195	188	-12%	-4%	+33%	
reenhouse gas emission footprint of consumption (MtCO₂eq)	300	252	282	-6%	12%	+35% (2015)	
reenhouse gas emission footprint of production (MtCO₂eq)	462	432	-	-7% ₍₂₀₁₆₎	-	+54% (2015)	
missions to air, water and soil, such as nitrogen and particulate matter	-	-	-	-	-	-	
and-use footprint of consumption (million ha)	10	-	10 (2017)	3% (2017)	-	-15% (2015)	
and-use footprint of production (million ha)	11	12 (2015)	-	9% (2015)	-	-28% (2015)	
Vater abstraction	-	-	-	-	-	-	
Vater footprint consumption (km³)	52 (2008)	-	-	-	-	+21% (2008)	
iodiversity footprint of consumption (million MSA loss ha/year)	19	-	-	-	-	+1% (2010)	
iodiversity footprint of production (million MSA loss ha/year)	20	-	-	-	-	+2% (2010)	
oxicity	-	-	-	-	-	-	
ocio-economic impact							
upply risks (indicator being developed)	-	-	-	-	-	-	
dded value of circular activities (EUR billion)	28	31	34	23%	9%	-	
hare circular activities (added value circular / GDP in %)	4	4	4	1%	o%	-	
ircular employment (no. of circular jobs in FTEs) (*1,000)	311	318	326	5%	2%	-	
					-		


Share circular employment (no. of jobs/total no. of jobs in %)

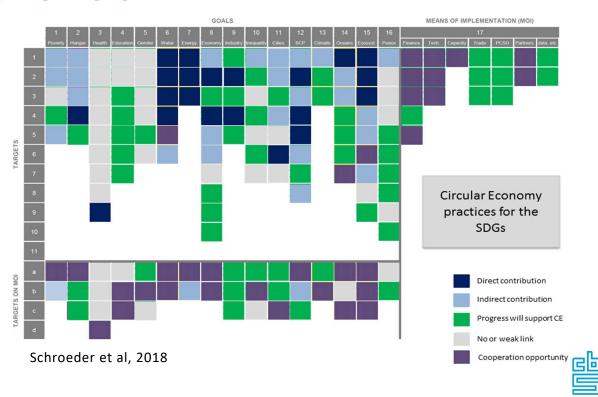
Role of SEEA II:

Integration of Environmental account modules:

- MFA
- Waste
- Air emission
- PEFA
- National accounts (Supply and use tables)

Source: CBS 2021

Relation to SDG's



Relation CE with SDG's

Direct contribution of CE to SDG targets.

Questions:

- 1) Which CE strategies contribute to SDG targets?
- 2) Can you monitor CE on the basis of SDGs?

Contribution CE to SDG targets

CE strategies:

- 1. Recycling
- 2. Efficiency
- 3. Substitution
- 4. Footprints

CE according to SDGs

SDG theme's:

- 1. Resource use
- 2. Waste
- 3. Supply security
- 4. Economic relevance

Derived from SEEA:

SDG indicators related to water, resources, energy, emissions and economy

Facts that matter