Almut Arneth, Karlsruhe Institute for Technology/Dept. Environmental Atmospheric Research Garmisch-Partenkirchen, Germany Climate(s) of the future – predicted conditions and their impact on the biosphere, and forests in particular Global surface temperature was 1.09 [0.95 to 1.20] °C higher in 2011–2020 than 1850–1900, with larger increases over land (1.59 [1.34 to 1.83] °C) # While changes in climatic impact-drivers will happen everywhere, there is a specific combination of changes each region will experience World regions grouped into five clusters, each one based on a combination of changes in climatic impact-drivers Reference period: Mid 21st century or 2oC GWL compared to a climatological reference period included within 1960-2014 ### The role of land ecosystems: carbon sink Nearly 30% of annual CO₂ emissions at present taken up by land ecosystems each year → dampens warming considerably! Processes: CO₂ fertilisation of photosynthesis, warming, forest area expansion, N- deposition. 2001-2010 **Old growth** (>140 years): 0.85 (0.66- 0.96) Pg C a⁻¹ **Regrowth**: 1.30 (1.03-1.96) Pg C a⁻¹ Nearly 50% from demographic processes alone Pugh et al., PNAS, 2018 # Ecosystems/forests also carbon sources! | Mean (GtC yr ⁻¹) | 2010–2019 | |---|--| | | 2010-2019 | | Total emissions $(E_{FOS} + E_{LUC})$ | | | Fossil CO ₂ emissions (E _{FOS})* | 9.4 ± 0.5 | | Land-use change emissions (E _{LUC}) | 1.6 ± 0.7 | | Total emissions | 10.9 ± 0.9 | | Partitioning | | | Growth rate in atmospheric CO_2 concentration (G_{ATM}) | 5.1 ± 0.02 | | Ocean sink (Socean) | 2.5 ± 0.6 | | Terrestrial sink (S _{LAND}) | 3.4 ± 0.9 | | | Net forest
GHG flux | | | MtCO ₂ e yr ⁻¹ (2001–2019) | | | - 0.17 | | Traines. | -0 | | The same of the same | | | | -0.087 | | | | Firedlingstein et al., ESSD 2020; Harris et al., NCC, 2021 ### Projections of the carbon source/sink Forests as natural climate solutions face fundamental limits and underappreciated risks Climate stress Biotic agents #### Expected: - Enhanced growth in some regions due to CO₂ fertilisation and climate-induced longer growing season - Changes in tree species composition (natural shifts or changes in seedlings planted) - Reduced growth due to drought and heat stress (and their combination) - Increased mortality due to drought and heat stress (and their combination), fire, insects, storms... - Area expansion as part of climate change mitigation? - Continued deforestation? Anderegg et al., Science, 2020 # Example 1: Canada ## Example 2: Tree ring analysis age/lifespan Tree old ages are reached only if juvenile growth is slow – Climate change will accelerate growth rates in many regions → Shorter forest lifetime Büntgen et al., Nat. Comm., 2019 # Will planting trees safe the climate? ### Will planting trees safe the climate? - Mistakes in their carbon uptake calculations - Unrealistic areas assumed available for reforestation/afforestation (all pastures) - Some non-forest ecosystems very carbon rich (savannahs) - Did not consider risks to forests arising from climate change - Seedling material unavailable at those quantities ### Will planting trees safe the climate? # Biophysical exchange processes complicate the matter further - → Reforestation in tropics: cool the surface. - → Reforestation in boreal env.: warm the surface - → Reforestation in temperate env: ? Perugini et al., ERL, 2017; Bonan et al., Science, 2010 | cilinate; | | | | | | | | |---------------|-----------|-------------|--|--|--|--|--| | From | То | Mean/value* | | | | | | | (a) Boreal | | | | | | | | | MODELLED | | | | | | | | | Grassland | Forest | 1.20* | | | | | | | Forest | Grassland | -1.96 | | | | | | | Forest | Bare land | -2.41 | | | | | | | Deforestation | | -2.18 | | | | | | | Forestation | | 1.2* | | | | | | | OBSERVED | | | | | | | | | Deforestation | | -0.59 | | | | | | | Forestation | | 0.59 | | | | | | | (b) Temperate | | | | | | | | | MODELLED | | | | | | | | | Grassland | Bare land | 0.55 | | | | | | | Forest | Bare land | -0.82 | | | | | | | Forest | Cropland | -0.30^{*} | | | | | | | Forest | Grassland | -0.8^{*} | | | | | | | Shrub land | Bare land | 0.30* | | | | | | | Other land | Forest | 0.56* | | | | | | | Deforestation | | -0.73 | | | | | | | Forestation | | 0.56* | | | | | | | OBSERVED | | | | | | | | | Deforestation | | 0.50 | | | | | | | Forestation | | -0.50 | | | | | | | (c) Tropical | | | | | | | | | MODELLED | | | | | | | | | Shrubland | Bare land | 0.55 | | | | | | | Shrubland | Cropland | 0.50* | | | | | | | Forest | Cropland | 1.02 | | | | | | | Forest | Grassland | 0.33 | | | | | | | Forest | Bare land | 1.06 | | | | | | | Grassland | Forest | -0.17 | | | | | | | Deforestation | | 0.60 | | | | | | | Forestation | | -0.17 | | | | | | | OBSERVED | | | | | | | | | Deforestation | | 0.41 | | | | | | | Forestation | | -0.87 | | | | | | ## Then shouldn't we plant more trees at all? #### Yes – if done well! #### WHICH STRATEGY? The amount of carbon stored by 2100 depends on which type of forest restoration the 43 Bonn Challenge countries in the analysis decide to adopt, across a total area of 350 million hectares (Mha). = 1 petagram of carbon #### **Current plans are maintained** With protection of natural forest 16 No protection of natural forest 3 (assuming naturally regenerated forests are converted to biofuel plantations in 2050) All land becomes plantations Lewis et al., Nature 2019 # Then shouldn't we plant more trees at all? Yes – if done well! | Practice | | ary/synop
expected | Mitigation
potential | Adaptation potential
(estimated number of people
more resilient to climate
change from intervention) | Biodiversity
impact (positive
unless otherwise
stated) | |---------------------------------------|---|-----------------------|---|---|---| | Reforestation and forest restoration | | (4) | 1.5-10.1 Gt CO ₂ e a ⁻¹ | > 25 million people | High | | Afforestation | • | | See Reforestation | Unclear | Negative/Low
positive ³ | | Reduced deforestation and degradation | 4 | | 0.4-5.8 Gt CO ₂ e a ⁻¹ | 1-25 million people | High | | Agroforestry | • | | 0.1-5.7 Gt CO ₂ e a ⁻¹ | 2300 million people | High | | | _ | | 0.5.4.010.0 | AL | | Arneth et al., ARER, 2021; IPCC/IPBES workshop report, 2021 # Then shouldn't we plant more trees at all? #### But think carefully! Subsidies in Chile to enhance forest cover \rightarrow payments for afforestation increased tree cover through expansion of plantations of exotic species but decreased the area of native forests (1986-2011). Subsidies contributed to an additional loss of 5% of forest. Heilmayr et al., Nat. Sust., 2020 ### Take home message - 1) Future climate change expected to enhance risks to forests (and C sink strength), especially via extreme weather - 2) Stopping deforestation and forest restoration can provide large co benefits in the climate-biodiversity nexus - 3) Don't rely on forests to safe us from climate change (-see (1)) the land area is limited...