Almut Arneth,

Karlsruhe Institute for Technology/Dept. Environmental Atmospheric Research Garmisch-Partenkirchen, Germany

Climate(s) of the future – predicted conditions and their impact on the biosphere, and forests in particular

Global surface temperature was 1.09 [0.95 to 1.20] °C higher in 2011–2020 than 1850–1900, with larger increases over land (1.59 [1.34 to 1.83] °C)

While changes in climatic impact-drivers will happen everywhere, there is a specific combination of changes each region will experience

World regions grouped into five clusters, each one based on a combination of changes in climatic impact-drivers

Reference period: Mid 21st century or 2oC GWL compared to a climatological reference period included within 1960-2014

The role of land ecosystems: carbon sink

Nearly 30% of annual CO₂ emissions at present taken up by land ecosystems each year → dampens warming considerably!

Processes: CO₂ fertilisation of photosynthesis, warming, forest area expansion, N-

deposition.

2001-2010 **Old growth** (>140 years): 0.85 (0.66-

0.96) Pg C a⁻¹

Regrowth: 1.30 (1.03-1.96) Pg C a⁻¹

Nearly 50% from demographic processes alone

Pugh et al., PNAS, 2018

Ecosystems/forests also carbon sources!

Mean (GtC yr ⁻¹)	2010–2019
	2010-2019
Total emissions $(E_{FOS} + E_{LUC})$	
Fossil CO ₂ emissions (E _{FOS})*	9.4 ± 0.5
Land-use change emissions (E _{LUC})	1.6 ± 0.7
Total emissions	10.9 ± 0.9
Partitioning	
Growth rate in atmospheric CO_2 concentration (G_{ATM})	5.1 ± 0.02
Ocean sink (Socean)	2.5 ± 0.6
Terrestrial sink (S _{LAND})	3.4 ± 0.9
	Net forest GHG flux
	MtCO ₂ e yr ⁻¹ (2001–2019)
	- 0.17
Traines.	-0
The same of the same	
	-0.087

Firedlingstein et al., ESSD 2020; Harris et al., NCC, 2021

Projections of the carbon source/sink

Forests as natural climate solutions face fundamental limits and underappreciated risks

Climate stress Biotic agents

Expected:

- Enhanced growth in some regions due to CO₂ fertilisation and climate-induced longer growing season
- Changes in tree species composition (natural shifts or changes in seedlings planted)
- Reduced growth due to drought and heat stress (and their combination)
- Increased mortality due to drought and heat stress (and their combination), fire, insects, storms...
- Area expansion as part of climate change mitigation?
- Continued deforestation?

Anderegg et al., Science, 2020

Example 1: Canada

Example 2: Tree ring analysis age/lifespan

Tree old ages are reached only if juvenile growth is slow – Climate change will accelerate growth rates in many regions → Shorter forest lifetime

Büntgen et al., Nat. Comm., 2019

Will planting trees safe the climate?

Will planting trees safe the climate?

- Mistakes in their carbon uptake calculations
- Unrealistic areas assumed available for reforestation/afforestation (all pastures)
- Some non-forest ecosystems very carbon rich (savannahs)
- Did not consider risks to forests arising from climate change
- Seedling material unavailable at those quantities

Will planting trees safe the climate?

Biophysical exchange processes complicate the matter further

- → Reforestation in tropics: cool the surface.
- → Reforestation in boreal env.: warm the surface
- → Reforestation in temperate env: ?

Perugini et al., ERL, 2017; Bonan et al., Science, 2010

cilinate;							
From	То	Mean/value*					
(a) Boreal							
MODELLED							
Grassland	Forest	1.20*					
Forest	Grassland	-1.96					
Forest	Bare land	-2.41					
Deforestation		-2.18					
Forestation		1.2*					
OBSERVED							
Deforestation		-0.59					
Forestation		0.59					
(b) Temperate							
MODELLED							
Grassland	Bare land	0.55					
Forest	Bare land	-0.82					
Forest	Cropland	-0.30^{*}					
Forest	Grassland	-0.8^{*}					
Shrub land	Bare land	0.30*					
Other land	Forest	0.56*					
Deforestation		-0.73					
Forestation		0.56*					
OBSERVED							
Deforestation		0.50					
Forestation		-0.50					
(c) Tropical							
MODELLED							
Shrubland	Bare land	0.55					
Shrubland	Cropland	0.50*					
Forest	Cropland	1.02					
Forest	Grassland	0.33					
Forest	Bare land	1.06					
Grassland	Forest	-0.17					
Deforestation		0.60					
Forestation		-0.17					
OBSERVED							
Deforestation		0.41					
Forestation		-0.87					

Then shouldn't we plant more trees at all?

Yes – if done well!

WHICH STRATEGY?

The amount of carbon stored by 2100 depends on which type of forest restoration the 43 Bonn Challenge countries in the analysis decide to adopt, across a total area of 350 million hectares (Mha).

= 1 petagram of carbon

Current plans are maintained

With protection of natural forest

16

No protection of natural forest

3 (assuming naturally regenerated forests are converted to biofuel plantations in 2050)

All land becomes

plantations

Lewis et al., Nature 2019

Then shouldn't we plant more trees at all?

Yes – if done well!

Practice		ary/synop expected	Mitigation potential	Adaptation potential (estimated number of people more resilient to climate change from intervention)	Biodiversity impact (positive unless otherwise stated)
Reforestation and forest restoration		(4)	1.5-10.1 Gt CO ₂ e a ⁻¹	> 25 million people	High
Afforestation	•		See Reforestation	Unclear	Negative/Low positive ³
Reduced deforestation and degradation	4		0.4-5.8 Gt CO ₂ e a ⁻¹	1-25 million people	High
Agroforestry	•		0.1-5.7 Gt CO ₂ e a ⁻¹	2300 million people	High
	_		0.5.4.010.0	AL	

Arneth et al., ARER, 2021; IPCC/IPBES workshop report, 2021

Then shouldn't we plant more trees at all?

But think carefully!

Subsidies in Chile to enhance forest cover \rightarrow payments for afforestation increased tree cover through expansion of plantations of exotic species but decreased the area of native forests (1986-2011). Subsidies contributed to an additional loss of 5% of forest.

Heilmayr et al., Nat. Sust., 2020

Take home message

- 1) Future climate change expected to enhance risks to forests (and C sink strength), especially via extreme weather
- 2) Stopping deforestation and forest restoration can provide large co benefits in the climate-biodiversity nexus
- 3) Don't rely on forests to safe us from climate change (-see (1)) the land area is limited...

