Presentation at the UNECE Work Session on Statistical Data Confidentiality

December 2021

# GENERATIVE ADVERSARIAL NETWORKS FOR SYNTHETIC DATA GENERATION: A COMPARATIVE STUDY

Claire Little, Mark Elliot, Richard Allmendinger, Sahel Shariati Samani

Centre for Digital Trust and Society

University of Manchester

# INTRODUCTION

- Generative Adversarial Networks (GANs)
   (Goodfellow et al. 2014) are gaining increasing attention as a means of synthesising data
- GANs have so far been used predominantly for image generation
- Less research into structured microdata synthesis
  - e.g. synthesising census or social survey data
- We compare two GANs with two statistical methods:
  - generate synthetic census data
  - perform analysis using disclosure risk and utility metrics



Synthetic images produced by NVIDIA's Style-Based GAN (Karras et al, 2019)

# GENERATIVE ADVERSARIAL NETWORKS (GANS)

- Composed of two neural networks
  - Generator, G
  - Discriminator, D
- Discriminator aims to determine whether a sample of data is from the real distribution or whether it was generated by *G*
- Generator creates data samples in order to fool the discriminator
  - Generator never sees the original data and learns only from error
- Performance improves over time
- Success if the discriminator cannot determine fake from real data



**Example of GAN architecture** 

#### Census data

- 1991 Individual Sample of Anonymised Records (SAR) for the British Census (ONS 2013), a 2% sample (1,116,181 records) including adults and children
- We subsetted one geographical region (n=104,267, 9.34% of total)
- Twelve variables used (11 categorical, 1 numerical)

| Area       | Age | Sex | Marital<br>Status | Economic group | Ethnic<br>group | Birth<br>country | Tenure          | Social class | Long<br>term ill | Num<br>quals | Family type             |
|------------|-----|-----|-------------------|----------------|-----------------|------------------|-----------------|--------------|------------------|--------------|-------------------------|
| Birmingham | 28  | F   | Single            | Employed ft    | White           | England          | Rent LA         | Skilled      | No               | one          | Lone no dep.<br>child   |
| Walsall    | 10  | M   | Single            | NA             | Indian          | England          | Rent<br>private | NA           | No               | none         | Married dep.<br>child   |
| Dudley     | 78  | M   | Married           | Retired        | White           | Scotland         | Own<br>outright | NA           | Yes              | none         | Married no dep<br>child |

- Synthesis Methods
  - Statistical
    - Synthpop (Nowok et al. 2016) CART based
    - DataSynthesizer (Ping et al. 2017, Zhang et al., 2017) uses Bayesian networks
  - GAN
    - CTGAN (Xu et al. 2019)
    - TableGAN (Park et al. 2018)

All methods used default parameters and generated synthetic data the same size as original dataset (n=104,267)

- Metrics
  - Disclosure risk
    - Measured using the Targeted Correct Attribution Probability (TCAP) (Taub & Elliot, 2019)
    - Provides a score between o and 1
      - Higher value implies higher risk
  - Utility
    - Propensity mean squared error (pMSE) (Snoke et al. 2018, Woo et al. 2009)
    - Confidence interval overlap (CIO)
    - Ratio of estimates (ROE)
- Risk-Utility comparison
  - R-U confidentiality map (developed by Duncan et al. 2004)
    - plots overall utility score against TCAP (risk) score
  - Ideally disclosure risk is minimised and utility is maximised

#### Metrics

- Disclosure risk
  - Measured using the Targeted Correct Attribution Probability (TCAP) (Taub & Elliot, 2019)
  - Provides a score between o and 1
    - Higher value implies higher risk
- Utility
  - Propensity mean squared error (pMSE) (Snoke et al. 2018, Woo et al. 2009)
  - Confidence interval overlap (CIO)
  - Ratio of estimates (ROE)
- Risk-Utility comparison
  - R-U confidentiality map (developed by Duncan et al. 2004)
    - plots overall utility score against TCAP (risk) score
  - Ideally disclosure risk is minimised and utility is maximised

- Metrics
  - Disclosure risk
    - Measured using the Targeted Correct Attribution Probability (TCAP) (Taub & Elliot, 2019)
    - Provides a score between o and 1
      - Higher value implies higher risk
  - Utility
    - Propensity mean squared error (pMSE) (Snoke et al. 2018, Woo et al. 2009)
    - Confidence interval overlap (CIO)
    - Ratio of estimates (ROE)
- Risk-Utility comparison
  - R-U confidentiality map (developed by Duncan et al. 2004)
    - plots overall utility score against TCAP (risk) score
  - Ideally disclosure risk is minimised and utility is maximised

#### Histograms comparing original data with synthetic data for age



Synthpop closely matched the age distribution whilst TableGAN struggled



# Bar graphs comparing original to synthetic data

Data produced by
Synthpop and
DataSynthesizer had
similar counts to the
original data.
TableGAN did not
manage to identify
all categories

#### The basket of utility metrics

| Metric                                        | Synthpop          | DataSynthesizer   | CTGAN             | TableGAN          |
|-----------------------------------------------|-------------------|-------------------|-------------------|-------------------|
| pMSE<br>1 - (4 x pMSE)                        | 0.00015<br>0.9994 | 0.01438<br>0.9425 | 0.03162<br>0.8735 | 0.17529<br>0.2988 |
| ROE univariate (mean)<br>ROE bivariate (mean) | 0.981<br>0.847    | 0.821<br>0.616    | 0.743<br>0.587    | 0.499<br>0.255    |
| Cl Overlap (mean)                             | 0.506             | 0.365             | 0.410             |                   |
| Overall utility                               | 0.833             | o.686             | 0.653             | 0.351             |

Synthpop had optimal results for all metrics

TCAP scores for the synthetic methods, four key sizes

| Target  | Key | Synthpop | DataSynthesizer | CTGAN | TableGAN | Baseline |
|---------|-----|----------|-----------------|-------|----------|----------|
| LTILL   | 6   | 0.935    | 0.929           | 0.912 | 0.911    |          |
|         | 5   | 0.897    | 0.898           | 0.891 | 0.907    |          |
|         | 4   | 0.894    | 0.899           | 0.889 | 0.907    | 0.774    |
|         | 3   | 0.936    | 0.951           | 0.931 | 0.901    |          |
| FAMTYPE | 6   | 0.709    | 0.623           | 0.598 | 0.301    |          |
|         | 5   | 0.725    | 0.658           | 0.639 | 0.384    |          |
|         | 4   | 0.736    | 0.654           | 0.651 | 0.416    | 0.223    |
|         | 3   | 0.809    | 0.608           | 0.648 | 0.420    |          |
| TENURE  | 6   | 0.596    | 0.429           | 0.490 | 0.217    |          |
|         | 5   | 0.504    | 0.376           | 0.453 | 0.336    |          |
|         | 4   | 0.500    | 0.350           | 0.447 | 0.341    | 0.329    |
|         | 3   | 0.496    | 0.353           | 0.482 | 0.279    |          |
| Average |     | 0.728    | 0.644           | 0.669 | 0.527    | 0.442    |

Synthpop had highest disclosure risk, TableGAN had the lowest

# RU Confidentiality map and table of results

|                 | Utility<br>(overall) | Risk<br>(TCAP) |
|-----------------|----------------------|----------------|
| Synthpop        | 0.833                | 0.728          |
| DataSynthesizer | o.686                | 0.644          |
| CTGAN           | 0.653                | 0.669          |
| TableGAN        | 0.351                | 0.527          |

Risk-Utility relationship appears to approximately follow a straight line – excluding the original data



# CONCLUSIONS

- Trade-off between utility and disclosure risk appears to fall on a relatively straight line
- Synthpop showed both highest utility and disclosure risk
- TableGAN had lowest disclosure risk but with unacceptably low data quality
- Methods only tested on a single dataset
- Methods only tested on a subset of records
- Bucket of analyses for the utility tests needs expanding
- Default parameters used for each method

## **FUTURE WORK**

- Much wider range of tests examining effects of parameter changes on the RU map
- Investigating other GAN architectures
- Investigating whether any method can effectively optimise both risk and utility
- Testing on larger datasets (number of variables and cases) and determining scalability of methods

# THANKYOU FOR LISTENING!