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Abstract 

In a Eurostat-granted project within Statistics Norway, the cell key method (CKM) and the small count 
rounding method (SCR) implemented in the r package SmallCountRounding are to be compared.  CKM 
perturbs all values without additivity constraints. SCR perturbs a number of inner cells so that small 
frequencies are avoided in the aggregated data to be published.  A fair comparison is challenging since the 
methods are very different. 
 
Inspired by synthetic data methods, one approach is to generate expected inner cell frequencies from the 
perturbed tables. These expected frequencies can be viewed as the best guess of individual level data, although 
the frequencies are not whole numbers. Since SCR is additive, expected frequencies can be generated by a 
variant of iterative proportional fitting (IPF).  This estimation coincides with log-linear modelling. This 
approach is not directly applicable to CKM. The data needs to be additivity restored first and we can perform 
this by least squares estimation. The results are then maximum likelihood estimates under the assumption of 
gaussian noise. This is a simplification compared to using the actual discrete noise distribution. A modification 
is needed to ensure non-negativity. Afterwards, expected inner cell frequencies can be obtained by IPF. 
 
No extra information has been added during this post-processing, but individual disclosive information is easier 
available.  Appropriate measures of risk and utility can be made based on the post-processed data and the 
original data. We will discuss possible measures that can be used to compare CKM, SCR, as well as other 
methods. In addition, they can be used as guidance for fine-tuning each method. 
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Abstract. In a Eurostat-granted project within Statistics Norway, the cell key method

(CKM) and the small count rounding method (SCR) implemented in the R package

SmallCountRounding are to be compared. CKM perturbs all values without additivity

constraints. SCR perturbs a number of inner cells so that small frequencies are avoided

in the aggregated data to be published. A fair comparison is challenging since the

methods are very different. Inspired by synthetic data methods, one approach is to

generate expected inner cell frequencies from the perturbed tables. These expected

frequencies can be viewed as the best guess of individual level data, although the

frequencies are not whole numbers. Since SCR is additive, expected frequencies can be

generated by a variant of iterative proportional fitting (IPF). This estimation coincides

with log-linear modelling. This approach is not directly applicable to CKM. The data

needs to have additivity restored first, which we can achieve by least squares estimation.

The results are then maximum likelihood estimates under the assumption of Gaussian

noise. This is a simplification compared to using the actual discrete noise distribution. A

modification is needed to ensure non-negativity. Afterwards, expected inner cell

frequencies can be obtained by IPF. No extra information has been added during this

post-processing, but individual disclosive information is more easily available.

Appropriate measures of risk and utility can be made based on the post-processed data

and the original data. In this paper we discuss possible measures that can be used to

compare CKM, SCR, as well as other methods. In addition, they can be used as

guidance for fine-tuning each method.

1 Introduction

Regardless of whether tabular data or microdata is to be released, statistical
disclosure control is about controlling the risk of revealing information about the
individual statistical units. In this paper, in order to assess risk we apply a micro
data approach to deal with tabular frequency data. More specifically, our approach
uses the inner frequency table obtained by crossing all of the main dimensional
variables. The microdata underlying the tabular frequency data can always be
represented by this inner frequency table.
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Table 1: Original inner frequencies
young middle old

party male female male female male female
A 0 0 8 4 4 1
B 0 1 3 5 1 0
C 2 3 9 6 2 7

Table 2: Original aggregated frequencies
party young middle old male female Total

A 0 12 5 12 5 17
B 1 8 1 4 6 10
C 5 15 9 13 16 29

Total 6 35 15 29 27 56

When the inner frequencies are not directly available, they can be generated by
a post processing technique (Langsrud, 2019). Below we compute expected inner
frequencies which can be viewed as the best guess of individual level data. The
general algorithm involves both iterative proportional fitting (IPF) and least squares
estimation. Although the frequencies are not whole numbers, they are well suited
as input to general methods for risk and utility calculations.

In the discussions below we consider the three-way (3×2×2) example data given
in Table 1. The variables are age, sex, and party affiliation and below we consider
the latter variable to be sensitive. The aggregated cells considered to be published
are in Table 2. However, a perturbation method is required, and in the next section,
the data are perturbed by the cell key method (CKM) based on Thompson et al.
(2013) and by the small count rounding method (SCR) described in Langsrud and
Heldal (2018) Then, in the following sections, we discuss comparable measures of
utility and risk.

2 Perturbation by CKM and SCR

Table 3 contains aggregated frequencies perturbed by CKM. The underlying
perturbation table was generated by the R package ptable (Enderle, 2021) with
parameter setting D = 5, V = 3 and js = 2. The latter parameter specifying that
1’s and 2’s are avoided. It is easy to see that Table 3 is not additive. The
published total for party A is 18, but calculated from the age and sex subtotals it
becomes 21 and 16, respectively.

Table 4 contains aggregated frequencies perturbed by SCR using R package
SmallCountRounding (Langsrud and Heldal, 2021) with 3 as the rounding base.
Tables perturbed by SCR are always additive since the method is based on
rounding small inner cell frequencies. The rounded inner frequencies underlying
Table 4 are given in Table 5. As can be seen, small frequencies (ones and twos)
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Table 3: Cell key perturbed frequencies to be published
party young middle old male female Total

A 0 16 5 12 4 18
B 0 10 3 3 4 10
C 5 11 7 10 16 29

Total 5 37 15 31 29 57

Table 4: Small count rounded frequencies to be published
party young middle old male female Total

A 0 12 5 12 5 17
B 3 8 0 3 8 11
C 5 15 9 13 16 29

Total 8 35 14 28 29 57

still occur in Table 5. However, this table is hidden from the user. The aim of the
algorithm is to limit rounding to a number of necessary inner frequencies. Since
Table 5 is hidden, it cannot be used as a basis for calculating risk and utility.

3 Fixing additivity by least squares

To calculate expected inner frequencies, we will first, when needed, restore additivity.
To describe the method, we let the vector y consist of all the elements of the original
inner frequency table. Furthermore, we let z be the vector of original aggregated
frequencies which can be computed from y via a dummy matrix X:

z = XTy (1)

When the perturbation method is a noise addition method, we can modify this
equation as

zperturbed = XTy + error (2)

Now we want to find an estimate of z from zperturbed. The specific noise distribution
is unknown to the user, but the assumption of Gaussian noise is a reasonable starting
point. The maximum likelihood estimates are then obtained by least squares. In this
modeling, y consists of the unknown parameters. The equation is over-parameterized
so the solution for y is not unique, but a unique solution for z can be found. A
problem is that negative elements within the estimated z are possible. Here we
use a practical and efficient way to handle this. Any negative estimates are set to
zero and the remaining z-values are re-estimated by least squares. The additivity-
restored version of Table 3, using this method, is given in Table 6. The values are
not whole numbers, but this is not a problem in our approach.
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Table 5: Small count rounded inner frequencies
young middle old

party male female male female male female
A 0 0 8 4 4 1
B 0 3 3 5 0 0
C 2 3 9 6 2 7

Table 6: Additivity-restored cell key perturbed frequencies
party young middle old male female Total

A 0.0000 14.9688 3.9687 13.5937 5.3438 18.9375
B 0.0000 8.8437 1.8438 4.9688 5.7187 10.6875
C 5.8182 12.9119 8.9119 10.9460 16.6960 27.6420

Total 5.8182 36.7244 14.7244 29.5085 27.7585 57.2670

4 Inner cells by iterative proportional fitting

We turn back to equation 1 and consider a situation with z known and with y
unknown. To estimate y from z we can make use of log-linear modeling, which
is common for count data. The specific model to be used is the log-linear model
where z is sufficient, which also means it is a Poisson regression model with X as
the matrix of independent variables. Our estimate of y are simply the expected
frequencies under this model. This estimate can be found by iterative proportional
fitting (IPF), which is a standard approach to fitting log-linear models.

Instead of assuming that z consists of original frequencies, we now consider the
additivity-restored (if needed) perturbed data as z. Although the starting point
for the log-linear modeling is counts, the IPF estimation method does not require
that z consist of whole numbers. By using this method, with Table 6 as input z,
Table 7 shows expected inner cell frequencies based on the cell key perturbed data.
Similarly, expected inner cell frequencies based on the small count rounded data are
given in Table 8. In this case, Table 4 could be used directly as input z, since this
table is additive. It is clear that Table 5 (hidden) and Table 8 are different, but
both add up to Table 4.

5 Utility

To discuss utility, we focus on a measure based on the Hellinger distance, hereinafter
referred to as Hellinger utility (Shlomo et al., 2015), which can be written as

utility = 1−HD(f, g)/

√∑
f (3)

where

HD(f, g) =

√
1

2

∑(√
f −√

g
)2

(4)
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Table 7: Expected inner cell frequencies from the cell key perturbed table
young middle old

party male female male female male female
A 0.0000 0.0000 10.7449 4.2239 2.8489 1.1199
B 0.0000 0.0000 4.1116 4.7322 0.8572 0.9866
C 2.3040 3.5142 5.1130 7.7989 3.5291 5.3829

Table 8: Expected inner cell frequencies from the small count rounded table
young middle old

party male female male female male female
A 0.0000 0.0000 8.4706 3.5294 3.5294 1.4706
B 0.8182 2.1818 2.1818 5.8182 0.0000 0.0000
C 2.2414 2.7586 6.7241 8.2759 4.0345 4.9655

and where f and g are vectors of original and perturbed counts, respectively. This
measure is bounded between 0 and 1 and 1 represents maximal utility (same as
original data). Hellinger utility is included in the package SmallCountRounding

and this utility measure based on the rounded frequencies to be published is printed
by default (Table 4 gives 0.9456). Hellinger utility based on inner frequencies is also
available within the package, though this is of little interest since this table is hidden.
Hellinger utility based on expected inner cell frequencies is more relevant. But in
any case, a measure based on the published frequencies is arguably more closely
related to user needs. Hellinger utility based on cell key perturbed frequencies can
be calculated similarly (Table 3 gives 0.9326). This small example data gives no
information about the difference between the methods in general. However, for
larger datasets it would be fairer to calculate Hellinger utility from the additivity-
restored frequencies, since this utility tends to be higher (Table 6 gives 0.9481).
Then the risk and utility measures are also calculated from the same data. It is
worth noting that new random values within the cell-key method will produce other
utility values. In this small example, the Hellinger utility varies a lot. For cell-key
perturbed and the corresponding additivity-restored frequencies 95% intervals are
[0.8871, 0.9392] and [0.8920, 0.9659], respectively. There is also some randomness
within the rounding algorithm. In this case, there are only two equally probable
utility values, 0.9457 and 0.9460.

6 Risk

When comparing protection methods, how to measure risk is a crucial discussion.
Some cases that can be considered unacceptable are:

� If the existence of certain non-zero frequencies can be concluded with certainty.

� If a large proportion of the perturbed frequencies (especially the small ones)

5



are equal to the original frequencies.

� If a sensitive variable (party) can be disclosed from quasi-identifiers (age and
sex)

Risk measures for all of these aspects may be based on the perturbed data directly
(Tables 3 and 4). In the case of CKM, the additivity-restored data (Table 6) can
be an improvement, if the decimal values are treated appropriately. Below we will
discuss how the estimated inner cell frequencies (Tables 7 and 8) can be used as a
basis for risk assessments. Tables 6 and 4 are the corresponding aggregated versions.

A data set of inner frequencies is a compact way of storing a micro data set.
Many rows with the same record are replaced with a single row and a frequency
value. When the frequencies are perturbed, the data can be viewed as a form of
synthetic micro data. We will look at inner frequencies in this way, even when they
are not whole numbers. When discussing synthetic data, direct disclosure from quasi
identifiers is often important. From the data, one can calculate the probability of
guessing the correct political party for all combinations of age and sex (the most
frequent was guessed). Such probabilities calculated from original data and the
two types of perturbed data are given in Table 9. Only ones (exact disclosure)
or probabilities close to one are problematic. One can argue that the frequencies
are important in addition to the probabilities, and this is common when looking at
synthetic data. However, it is debatable whether it really is twice as bad to reveal
two similar units as to reveal a unique unit. One possibility may actually be to treat
all probabilities equally. In this example, exact disclosure is found in two of the
cell-key cases. Only one of the cases corresponds to exact disclosure in the original
data.

Most people know enough about themselves to be able to place themselves in a
table to which they contribute. This knowledge can be utilized in order to try to
disclose information about other units by removing oneself from the table. This base
assumption is a special case of the direct disclosure approach discussed in Lupp and
Langsrud (2021). In the following we discuss how this can be used to comparably
estimate risk across different perturbation methods. One possibility is to remove
oneself from Tables 6 and 4 and then recalculate Tables 7 and 8. A simpler approach
is to remove oneself from Tables 7 and 8 directly. The latter approach has been used
to re-calculate the probabilities and the results are presented in Table 10. That is, the
probabilities are increased by removing a number, maximum one, from a category.
Additional disclosure is found. Now both disclosures for cell-key corresponds to
disclosure in the original data.

Targeted correct attribution probability (TCAP) has been introduced as a
relevant risk measure for attribute disclosure attacks (Taub et al., 2019). It
captures the proportion of records, among those considered revealable from the
synthetic data (l-diversity of 1), that have the same target value on it’s original
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equivalent. We will look at the problem similarly and l-diversity of 1 corresponds
to ones in the probability tables.

However, we propose a risk measure that is not based on counting records, but
rather based on number of exact disclosures in the probability tables. Let a and b
be the number of exact disclosures found from the original and perturbed data,
respectively. In addition, let c be the number of exact disclosures that the original
and perturbed data have in common, i.e., their intersection. In the calculation of b
we omit combinations of quasi-identifiers with no corresponding observations in the
original data. This corresponds to the intruder scenario on which TCAP is based.
To assess disclosure risk, the ratios c/a and c/b provide valuable insight (the latter
of which can be viewed as an alternative to TCAP). Indeed, these ratios
correspond to established measures used in the fields of information retrieval and
machine learning: mr = c/a and mp = c/b are known as recall and precision
respectively (Kent et al., 1955). Both measures provide different views on the
effectiveness of the perturbation method. Recall provides a measure of how many
actual disclosures the perturbated dataset contains, whereas precision measures
how many of the disclosures in the perturbed dataset are real. As such, contrary to
their common uses within information retrieval one wishes to minimize precision
and recall in the context of disclosure.

In order to provide a single risk measure with which to compare perturbation
methods, we propose using the well-established Fβ measure to combine precision
and recall (Rijsbergen, 1979). In general, Fβ provides a weighted harmonic means
of precision and recall, where β provides a weight for recall, i.e., for β > 1 recall is
prioritized over precision. Thus, our proposed risk measure is as follows:

risk = (1 + β2) · mpmr

β2mp +mr

=
(1 + β2)c

β2a+ b
(5)

This value lies between 0 and 1, where a value of 0 states that none of the perturbed
disclosures are actual disclosures and a value of 1 describes that the disclosures in
the perturbed data set are precisely the actual disclosures. Though this is open for
debate and yet to be tested extensively, we believe it reasonable to set β < 1 and
place greater weight on precision. As such, in the following we present the calculated
risk using the Fβ risk measure for β = 0.5.

Based on Table 9, the SCR risk is 0.0000 (a=1, b=c=0) and the CKM risk is
0.5556 (a=c=1, b=2). Based on Table 10, the SCR risk is 0.7143 (a=3, b=c=1)
and the CKM risk is 0.9091 (a=3, b=c=2). New random values within the cell-key
method will produce other risk values. From regenerated versions of Table 9, the
risk is 0.0000 and 0.5556 in 49% and 48% of the times, respectively. Similarly, for
Table 10, the risk is 0.0000, 0.7143, 0.9091 and 1.0000 in 36%, 8%, 51% and 4%
of the times. In both cases other risk values can also occur. Within the rounding
algorithm, according to Table 9, there are only two equally probable risk values,
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Table 9: Calculated probabilities of disclosing party by guessing. For cells marked with
*, the wrong party is guessed as most frequent (not same as in original).

young middle old
Source male female male female male female
Original 1.0000 0.7500 0.4500 0.4000 0.5714 0.8750

CKM 1.0000 1.0000 0.5381* 0.4655 0.4878* 0.7187
SCR 0.7326 0.5584 0.4875* 0.4696 0.5334* 0.7715

Table 10: Calculated probabilities, given that you know yourself, of disclosing party by
guessing. For cells marked with *, the wrong party is guessed as most frequent (not
same as in original).

young middle old
Source male female male female male female
Original 1.0000 1.0000 0.4737 0.4286 0.6667 1.0000

CKM 1.0000 1.0000 0.5664* 0.4950 0.5660* 0.8295
SCR 1.0000 0.7001 0.5172* 0.4978 0.6146* 0.9134

0.0000 and 0.5556. Correspondingly, for Table 10, the values are 0.7143 and 0.9091.
This small example is only meant as illustration of the methodology. We cannot
conclude anything general from these results.

7 R implementations

Fixing additivity by least squares can be done by the function LSfitNonNeg in the
package SSBtools (Langsrud and Lupp, 2021b). The function is made to handle
large problem instances by using a sparse matrix methodology. This function is an
improvement on functions for similar problems discussed in Langsrud (2019),
which mentinos that the R-package glmnet could be used. However, after more
thorough study, the glmnet approach cannot be recommended generall due to
problems with machine precision. In Langsrud (2019) expected inner frequencies
were calculated by glm using the Poisson family. This function cannot handle large
problems. Now a function for iterative proportional fitting, named Mipf, is
included in package SSBtools, where large sparse problems are handled. Recently,
the package SmallCountRounding has been extended by the function
PLSroundingFits, which calculates expected inner cell frequencies (using Mipf).

The package SSBcellKey (Langsrud and Lupp, 2021a) includes a function for
CKM with an interface similar to that of SmallCountRounding. This package
depends on ptable (Enderle, 2021). SSBcellKey also includes a function, called
PLSroundingFits, which calculates additivity-restored fits and expected inner cell
frequencies (LSfitNonNeg and Mipf are used). To estimate inner cell frequencies
correctly it is important that empty cells (zero frequency) missing in input data are
included in the fitting process. The functions CellKeyFits and PLSroundingFits
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include functionality to handle this problem by adding zero frequency rows (the
function Extend0 in the package SSBtools is used). As mentioned above, Hellinger
utility is included in the SmallCountRounding package, but currently this is not
included in SSBcellKey. The risk measures included above are intended as a basis
for discussion and are not implemented in any R-package.

8 Discussion

In general, when attempting to compare two tabular perturbing methods one could
first decide the acceptable level of risk. Thereafter each method is tuned to this risk
level. The winning method can then be chosen as the one with highest utility. In
practice this is not easy; the most challenging part is how to measure risk and how
to decide what risk levels are acceptable. This paper does not attempt to provide
complete answers to these questions. Rather, we discuss some tools and approaches
that can be useful. We propose how data can be made comparable as a starting
point for comparable risk measures. A specific risk measure has also been presented
and computed. This measure is, however, just one of many possibilities. To handle
the problem of assessing risk, a single number may not be the best solution.

Using expected inner cell frequencies, as discussed above, is a very general
approach. Such data can be viewed as a kind of synthetic data. An advantage of
this approach is that different perturbation methods can be treated in the same
way and thus compared fairly. Specific parameter settings within the perturbation
methods are not taken into account. This is in accordance with the rule that
parameter settings should be hidden from the user. Thus, we can assume that this
information is also hidden from an attacker. Then risk can also be compared
across different choices of tables to be published.

Whether it is appropriate to look at the data in this way will depend on the
type of data that is published. The census 2021 data to be published on grids
involve several variables that are not crossed. In this case it seems more appropriate
to calculate risk more directly from the published or the additivity-restored data.
With such data as a starting point, the framework based on disclosure probabilities
can still be used and there will be an even closer relationship to the direct disclosure
approach to suppression (Lupp and Langsrud, 2021).
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