

CONFERENCE OF EUROPEAN STATISTICIANS
Expert Meeting on Statistical Data Confidentiality
1-3 December 2021, Poland

Considerations to deal with the frozen cell problem in Tau-Argus
Modular.
Sarah Giessing (Destatis)
Sarah.Giessing@destatis.de

Abstract

The package τ Argus is a widely used EU-funded Open Source tool for disclosure control in tabular data. For
secondary cell suppression it offers several alternative algorithms, one of which, referred to as “Modular”, is
recommended best practice for application to large, complex structured sets of hierarchical and linked tables.
Meanwhile, several NSIs and Eurostat have invested into integration of the software into production
environments. The issue we mainly address in this paper is an important use case still lacking a sound
methodological approach: The usual production process for a statistic involves dissemination of a major set of
pre-planned tables as soon as data are available for this production step. Typically, later on, there will be
requests from users for specific additional tabulations, often linked to the tables of the already disseminated
ones. When protecting such additional tables one has to take into account the suppression pattern of the
disseminated tables: Suppressed cells must be suppressed in those new tables as well, and cells already
disseminated must not be used as secondary suppression in the additional tables to avoid disclosure risks.
However, the latter, sometimes referred to as “frozen cells”, may cause an infeasible problem for the cell
suppression algorithm, creating a major obstacle for using τ -Argus in this use case, especially in a widely
automated production process. The paper will propose a work around for the infeasibility problem, and explore
issues of respective enhancement of the Modular method.

mailto:Sarah.Giessing@destatis.de

1

Considerations to deal with the frozen cell problem in -Argus

Modular

Draft version of 20.11.2021

Sarah Giessing*, Peter-Paul de Wolf**, Michel Reiffert*, Felix Geyer*
* Statistisches Bundesamt, Germany, Sarah.Giessing@destatis.de. michel.reiffert@destatis.de,

felix.geyer@destatis.de
** Statistics Netherlands, The Netherlands, pp.dewolf@cbs.nl

Abstract: The package τ-Argus offers several alternative algorithms for secondary cell suppression, one

of which, referred to as “Modular” is recommended best practice for application to large, complex

structured sets of hierarchical and linked tables. The issue we mainly address in this paper is an

important use case still lacking a sound methodological approach. When protecting tables in a late stage

of the dissemination process of a statistics, one has to take into account the suppression pattern of

disseminated tables released earlier: Suppressed cells must be suppressed in those new tables as well,

and cells already disseminated must not be used as secondary suppression in the additional tables to

avoid disclosure risks. The paper proposes a work around for the infeasibility problems frequently

caused by such restrictions.

1 Introduction

The package τ-Argus is a widely used EU-funded Open Source tool for disclosure

control in tabular data. For secondary cell suppression it offers several alternative

algorithms, one of which, referred to as “Modular”, is recommended best practice for

application to large, complex structured sets of hierarchical and linked tables.

Meanwhile, several NSIs and Eurostat have invested into integration of the software

into production environments. The paper assumes some familiarity with the concepts of

the Modular algorithm, like e.g. the concept of protecting a table as set of linked

subtables and the concept of subtables of hierarchical tables itself, feasibility intervals

and protection levels and the different risk-models for hierarchical and linked tables (c.f.

Hundepool et al, 2012, chap. 4).

The issue we mainly address in this paper is an important use case still lacking a sound

methodological approach: The usual production process for a statistic involves

dissemination of a major set of pre-planned tables as soon as data are available for this

production step. Typically, later on, there will be requests from users for specific

additional tabulations, often linked to the tables of the already disseminated ones.1 When

protecting such additional tables sharing identical cells with already released ones, one

has to take into account the suppression pattern of the disseminated tables: Suppressed

cells must be suppressed in those new tables as well, and cells already disseminated

1 Notably, even pre-planned tables of different statistics (on related subjects) can share certain totals or

sub-tables, but one of the statistics will be released (and protected) earlier.

mailto:Sarah.Giessing@destatis.de
mailto:michel.reiffert@destatis.de
mailto:felix.geyer@destatis.de
mailto:pp.dewolf@cbs.nl

2

must not be used as secondary suppression in the additional tables to avoid disclosure

risks. Sometimes, users try to give the disseminated cells extremely high costs, such that

they will not be used as secondary suppression if possible. However, if needed to avoid

infeasibility, Argus will still select those cells. Therefore, with this approach we can still

end up with tables that have suppressed values published in another table, c.f. the

example in sec. 2. This is why in the present paper we only consider the other option

Argus offers, i.e. to give such cells a “protected” status, making them unavailable for

secondary cell suppression. However, presence of such “frozen” cells, unavailable for

secondary cell suppression, may cause an infeasible problem for the cell suppression

algorithm, creating a major obstacle for using -Argus in this use case, especially in a

widely automated production process.

Section 2 provides some background to the problem we deal with in this paper. In

section 3, the paper will propose on one hand ideas to identify/evaluate infeasibility

issues due to the presence of frozen cells and ideas for mechanisms allowing users of

Modular to tolerate certain underprotection risks in order to increase the amount of data

that can be released “safely” in a relaxed sense of what is “safe”. On the other hand, we

describe a work around for remaining, intolerable infeasibility problems in section 4.

Section 5 discusses an illustrative example. The paper finishes with a brief summary.

2 Background

Statistical offices collect information on several properties that might be used for

grouping respondents, like e.g. information about respondent economic activity

(NACE) and geographic location. A naïve approach mentioned as one of three ways to

deal with linked tables in (De Wolf and Hundepool, 2010) might be to create all

potentially interesting cross-combinations of grouping variables, also at various levels

of detail of those variables, and subject the resulting tables to primary and secondary

cell suppression. The problem in practice is that those tables would often form a set of

linked, huge, multidimensional, hierarchical tables involving many zero cells, and many

cells with very few contributions on the lower levels of aggregation, which will turn out

to be primary suppressions. However, the presence of many zero cells which usually

cannot be used as secondary suppressions often requires secondary suppressions one or

more levels of aggregation above the level of the primary suppression requiring the

protection. Those higher level secondary suppressions themselves then require further

secondary suppressions, and sometimes these again are only to be found on the next (or

even higher) level of aggregation. Because of this, the naïve approach has a tendency to

lead to rather many secondary suppressed high level aggregate cells on account of

protecting much less relevant low level aggregate tables.

It is therefore good practise to split the dissemination process into two phases: In the

first phase, the agency releases only those tables identified by the statistics experts as

relevant for the users of a statistic in general. Of course, these tables should be protected

3

in a joint step, i.e. as set of linked tables, such that secondary suppressions are

coordinated as offered by the Modular approach for linked tables in -Argus.

In the second phase, users may put in requests for some extra results or tables left aside

in the first phase. Before releasing them, protection has to be applied to these additional

tables as well, in coordination with the suppression pattern of phase one: This means, if

a new table is linked to the disseminated set of tables, all table cells which are logically

identical must have the same suppression status, i.e. suppressed “unsafe”, or not

suppressed, “safe” cells. The protection procedure has to be prepared in such a way that

τ-Argus treats phase 1 secondary suppressed cells as unsafe cells, and that phase 1 safe

cells become not eligible for suppression. For the latter, τ-Argus offers two alternative

options: One is to assign high penalty costs to those cells. The other, more direct option

is to mark them as “protected”, a.k.a. “frozen” cells.

However, there can be constellations, where under the constraints caused by “frozen”

cells no feasible solution exists, as illustrated by the table in figure 1 below. For this

instance, we assume only the margins of the table have been considered as relevant in

phase 1, and have got released in that phase without suppressions. In phase 2, those cells

must not be used as secondary suppressions – they must keep their status “safe”. In this

instance, adding penalty costs will not prevent the algorithm from picking those “safe”

cells as secondary suppression. The solution will be inconsistent (to phase 1), but this

will be up to the user to check: since τ-Argus is not aware of phase 1, it cannot issue a

warning. As mentioned in the introduction, we therefore do not consider this approach

in this paper.

If the user marks those cells as “protected” on the other hand, Modular quits with an

error message2, and provides no solution. For an unstructured, non-hierarchical table

this may be appropriate. However, phase 2 tables may have complex hierarchical

structures just as well as phase 1 tables do. And returning no solution for a large table

when the infeasibility problem caused by cells marked “protected” affects only one

particular subtable is very inconvenient and makes the method more or less impossible

to use in phase 2 production scenarios.

Figure 2 provides some illustration: The table is 2-dimensional with hierarchical

structure in the variable NACE. We assume all margins and submargins got released in

phase 1, they must hence keep their status “safe”. This causes infeasibility of the

subtable relating to parent node A of that hierarchy. Notably, the subtable is identical to

the one of figure 1. In the two other subtables relating to nodes B and C, no infeasibility

problem occurs. In this example the best and most practical solution would be for

Modular to return a solution where all interior cells of the node A subtable are marked

2 “Error in modular suppression procedure HiTaS: lower- and upper bound both equal infinity.”

4

as suppressed, including the zero cell. This is the concept worked out in some more

detail in sec. 4.

Fig. 1 Simple table, infea-

sible due to frozen cells

Fig. 2 Hierarchical table, infeasible due to frozen cells

Especially with respect to that part of the paper, we limit the problem we address to

the following case: A set of N linked phase 2 tables {T1,…,TN} that need to be protected

simultaneously. For those tables using the same spanning variables we assume that

they have hierarchies that can be covered in the sense of (de Wolf and Hundepool,

2010). This means, we assume a single hierarchy can be constructed such that all

hierarchies of the same variable in the N tables are a sub hierarchy of the cover

hierarchy. Under these circumstances, in the absence of any “protected” cells, we

could process those tables with the modular approach for linked tables (de Wolf and

Hundepool, 2010). This means that we use the Modular approach (de Wolf, 2002) on

the cover table Tc, but only consider those subtables that are also subtables of at least

one of the specified tables T1,…,TN and skip any other subtable that is not a subtable of

any of the tables in the set { T1,…,TN }.

3 Infeasibility of a subtable with protected cells – checks and remedies

Within the modular method, a suppression pattern for a particular subtable is

computed by an optimization routine, implementing the MILP approach of Fischetti

and Salazar (2000). Especially in cases of infeasibilty, a call to this routine sometimes

finishes with a somewhat unclear result. In such a case we suggest to implement a

check to find out, if “complete suppression” of the subtable subject to frozen cells, i.e.

suppressing all cells of this subtable except for the “protected” ones and except for

zero cells not eligible for suppression, might be considered a feasible solution for users

willing to accept certain disclosure risks.

We imagine several alternatives for such a check at different degrees of computational

complexity, and at different levels of tolerated underprotection risks. Notably, checks

(3) and (4) should give identical results in theory, but might perform differently in

practice. They are more rigorous compared to checks (1) and (2). Checks (2) to (4)

should be implemented subject to eventually relaxed protection requirements

regarding non-primary sensitive cells, see sec. 3.1.

5

Of course, subtables passing checks (3) or (4) will also pass check (2), and those

passing check (2) always pass check (1) as well. The same holds the other way round,

i.e. those failing the simple checks also fail the rigorous ones. Hence, which of the

checks to actually implement is a matter of computational performance: heuristic

checks should only be implemented, if the efficiency gain of not having to run the

rigorous checks on those subtables already failing the heuristic ones is worth the effort

of running several checks on those passing them.

(1) Simple heuristic check. The check only ensures that complete suppression yields

for every subtable relation that either no, or at least two cells are suppressed, and

that for every equation which contains more than one “singleton” (i.e. table cell

based on only a single contribution) primary suppression, at least three cells are

suppressed.

(2) Extended heuristic check. In addition to the simple check, in the extended

version we also check for any primary suppression within a subtable relation that

the required protection level is afforded by the other suppressions in that equation.

(3) Check involving optimization routine. This check passes the subtable once again

to the optimization routine, after manipulating the input to reflect complete

suppression of the subtable (except for the protected and zero cells), to see, if the

routine returns a clear result for this modified version of the problem.

(4) Check by subtable audit. The check computes a feasibility interval for every

primary and secondary suppression subject to complete suppression of the subtable

(except for protected and zero cells). A subtable would pass this check if all

feasibility intervals satisfy the protection requirements of the respective cells with

respect to the relaxed protection requirements regarding any non-primary sensitive

cells, see sec. 3.1.

3.1 Tolerating underprotection risks as remedy of technical infeasibility

Feasibility of a cell suppression problem defined for a subtable with protected cells

can depend specifically on protection requirements assigned to the cells in the

subtable. While -Argus derives protection requirements for primary unsafe cells

based on fairly sound methodology (c.f. Hundepool et al., 2012, 4.3.2), for cells unsafe

because they have been selected as secondary suppression in another subtable,

Modular uses the minimum of a fixed percentage q of its cell value and the maximum

protection level of all primary suppressions in this other subtable as heuristic

approach. This ensures that in this other subtable ST1 which is of course linked to the

original subtable ST0, the suppression pattern will be computed in such a way that the

upper and lower bounds of the feasibility interval for that cell will differ from its true

value by at least q% or by the largest protection level of suppressions in ST0,

 max(pl(𝑇0)). However, as explained in Appendix A.1, in certain constellations the

protection requirement of max(pl(𝑇0)) for a secondary suppression from ST0 in

6

subtable ST1 can be unnecessary large, and this can have an undesirable effect,

damaging especially in a situation with frozen cells:

Assume for example, ST1 to be at least two dimensional and the secondary suppression

with value 𝑦 from subtable ST0 to be a margin cell of an equation of ST1 with only

two non-zero interior cells with cell values 0 < 𝑧1 < 𝑧2, and pl(𝑥) ≤ 𝑧1 <
max(pl(𝑇0)) < 𝑧2 . Assume further, the larger cell with value 𝑧2 to be the only non-

zero interior cell in another equation and the margin cell of this equation (with

identical cell value 𝑧2) to be protected. Then, at least regarding that table equation, the

smaller cell with value 𝑧1would provide enough protection for the primary unsafe cell

of ST0 and this choice may lead to a feasible solution. But because 𝑧1 < max(pl(𝑇0))

only the larger cell with value 𝑧2 will be eligible for the algorithm. Then, because of

its protected margin, ST1 will prove infeasible for the secondary cell suppression

algorithm. Sec. 5 presents an illustrative example for such a case where infeasibility is

caused by an unnecessarily big protection requirement assigned by Modular to a

secondary suppression.

De Wolf and Giessing (2009) drafts a method to determine protection levels for

secondary suppressions in a theoretically sound way using “partial suppression”

methodology (Salazar, 2005). However, this approach is not yet available in Argus.

As a result, users of Modular have to put up with some underprotection risks due to

too small protection levels, and at the same time with some secondary suppressions

that are unnecessarily large, or located in subtable margins (eventually affecting

further subtables), and may even cause subtable infeasibility in situations with frozen

cells.

While a sound methodology (based on methods such as partial suppression) is not yet

available (i.e.: not yet implemented) in Modular, one might consider a simple

alternative to define protection levels for secondary suppressions to be offered with

Modular in general, or just when checking a subtable with an unclear status regarding

its feasibility:

Secondary suppression protection levels avoiding only exact disclosure

This option may lead to underprotection risks, but reduces cases of infeasible

subtables to the best possible extent. According to the option, protection levels for

secondary suppressions carried over from other subtables would be set to a fixed small

amount, like the smallest non-zero value of all non-frozen cells in the table. Using this

option in a scenario without frozen cells reduces cases of secondary suppression

selected in subtable margins (hence leading to additional secondary suppressions in

other linked subtables) to the best possible extent under the restriction of avoiding

exact disclosure.

To reduce the underprotection risks associated to the approach, a variant could be, to

execute the CSP algorithm twice for a subtable: In the first execution, the fixed small

amount protection levels are used with the secondary suppressions. In the second run

(which would be carried out independent of the first run), the standard protection

7

levels (e.g. small percentage of their cell value) are applied. If this second problem

turns out infeasible, or if there are more subtable margin cells suppressed than by the

first run (if the reduced protection levels should also apply in scenarios without frozen

cells), the result of the second run would be discarded, otherwise we would discard the

result of the first run.

4 Skipping infeasible subtables as last resort

Assume now a scenario where the option of reducing protection levels does not apply,

or does not solve the problem and a subtable with protected cells fails the checks of

sec. 3. What we want to avoid is that Modular simply quits, providing not even

feasible solutions for subtables eventually processed earlier.

The approach we propose here to deal with frozen cells in stage-2 tables is just a

straightforward extension of the modular approach for linked tables (de Wolf and

Hundepool, 2010) to skip certain subtables. The main difference is the following: in

the “normal” linked tables approach, it is clear from the start, which subtables to skip,

and which to consider. With the new method we suggest here, some of the subtables to

skip are identified “on the fly”, at runtime. Like in the “classical” modular approach

for linked tables we of course skip any subtable that is not a subtable of any of the

tables in the set { T1,…,TN }. But now, additionally, when one of the other subtables is

processed, and there are “protected” cells in that subtable, whenever this problem turns

out to be infeasible, we skip this subtable for the remainder of the process, along with

any of its “descendant”-subtables.

With the classical modular approach for linked tables, assigning a suppression status

to cells of a skipped subtable is not an issue, because the skipped subtables do not

belong to any of the set { T1,…,TN } anyway. But the skipped infeasible or descendant

subtables do, so they need a suppression status. This should be a special status which

should be assigned to all interior cells including the zero cells in the subtables,

indicating that no cell with this status – zero or non-zero - must be published.

The general idea behind this approach is that releasing infeasible subtables, or their

descendants, does not give away more information than the information already

released at stage 1 plus the information in the feasible phase 2 subtables and should

therefore be acceptable from a disclosure risk management point of view.

4.1 What is a descendant–subtable?

A subtable of an n-dimensional hierarchical table is defined as cross combination of

table relations: 𝑒1 × … × 𝑒𝑛. The 𝑖th relation 𝑒𝑖 defines the relation between one non-

bottom category 𝑡𝑜𝑝(𝑒𝑖) of the 𝑖th classification variable (for example “food

production sector”) and those 𝑘(𝑒𝑖) categories (𝑏𝑜𝑡(𝑒𝑖)𝑗)
𝑗=1,…𝑘(𝑒𝑖)

 on the level

immediately below belonging to this category (here: bakers, butchers, etc.). We refer

8

to 𝑡𝑜𝑝(𝑒𝑖) as 𝑖th parent node of the sub-table, and to the 𝑏𝑜𝑡(𝑒𝑖)𝑗 as child nodes of the

𝑖th parent node of the subtable. If one of the 𝑏𝑜𝑡(𝑒𝑖)𝑗 nodes is the same as the 𝑡𝑜𝑝(𝑒𝑖′)

node of another sub-table, i.e. if this child node is also a parent node of another sub-

table, then we also refer to the child nodes 𝑏𝑜𝑡(𝑒𝑖′)𝑗 as descendant nodes of the higher

level parent node 𝑡𝑜𝑝(𝑒𝑖). Notably, we also call the original child nodes 𝑏𝑜𝑡(𝑒𝑖)𝑗

descendant nodes of 𝑡𝑜𝑝(𝑒𝑖).

We call an entire sub-table 𝑒1′ × … × 𝑒𝑛′ a descendant subtable of a subtable 𝑒1 × … ×
𝑒𝑛, if for all dimensions 𝑖 = 1, … , 𝑛 either 𝑒𝑖

′ = 𝑒𝑖, or 𝑡𝑜𝑝(𝑒𝑖′) is a descendant of

𝑡𝑜𝑝(𝑒𝑖).

5 An Illustrative Example

For illustration of the propositions presented above, we use the structure of the

instance of a single 2-dimensional table used in (de Wolf, 2002), but with a modified

setting regarding cell values and primary suppressions, c.f. fig. 4.

Fig. 4 Suppression pattern for table R x

BC, cell values of primary unsafe cells

displayed in red, secondary suppres-

sions obtained by “Optimal”, in blue

Fig. 5 Table R x BC, shaded bars

covering interior cells of six skipped

subtables, c.f. sec. 5.2.

The instance assumes cell (R,A) to be primary unsafe with upper and lower protection

levels of 4, and (P1,O) unsafe with protection level of 20. We also assume that the

margins of variable BC have been published already at the higher levels (0, 1, 2) of

variable R, thus the status of these cells has to be frozen. As all those margin cells are

unsuppressed in this instance, they are not allowed as secondary suppressions. We set

them to protected when setting up the instance for -Argus.

We further assume Modular to protect the subtables in a sequence defined by

crossings of hierarchy levels (𝑎1, 𝑎2) of variables R and B, here in the sequence (1,1),

(2,1), (1,2), (2,2), (3,1) and (3,2) as suggested in (de Wolf and Loeve, 2004), with

eventual backtracking when subtable margins of level 2 onwards get suppressed in a

subtable. Throughout this instance we denote subtables by (𝑎1, 𝑎2)|(𝑅𝑖, 𝐵𝐶𝑗), i.e. by

the crossing of hierarchy levels they relate to, together with categories 𝑅𝑖 and 𝐵𝐶𝑗 of

the grand total cell of the respective subtable.

9

When protecting the first subtable (1,1)|(R,BC), four cells will be suppressed. In this

simple case, it is obvious that three of them {(P2,O), (P2,I), (P1,I)} are selected to

protect cell (P1,O), while the fourth, (P2,A), is secondary suppression to (R,A).

When processing in the next step the subtables relating to the crossings of levels (2,1)

and (1,2), those cells will be handled (temporarily) as primary suppressions.

In appendix A.2 we explain why the protection level of (P2,A) in subtable

(2,1)|(P2,BC) is likely to be larger than 5, and why this leads to infeasibility of

subtable (2,1)|(P2,BC). In fact, current versions of Modular (Version 4.1.7, for

example) abort when attempting to protect this instance.

5.1 Solution based on the risk toleration approach

In this particular instance, the problem is clearly due to how Modular assigns the

protection level to the temporary primary suppressions, because a protection level of 4

would indeed be sufficient for (P2,A) to protect in return (R,A). Actually, the -Argus

full optimization algorithm (“Optimal”) returns a feasible solution for the instance, cf.

fig. 4. However, while restoring to Optimal is no problem for this tiny instance, for our

typical large 3- and more dimensional hierachical tables it is not usually an option

because of the enormous computational burden of the full optimization method.

In order to get a solution from Modular, we now follow our proposal from sec. 3.1 to

rather tolerate some underprotection risks, if this way we can obtain a suppression

pattern that at least avoids exact disclosure. As suggested in sec. 3.1, we use as

protection level for temporary primaries the smallest non-zero value of all non-frozen

cells, which is 5 in our instance and leads to selection of (C22,A) to protect (P2,A) in

subtable (2,1)|(P2,BC).

5.2 Solution based on the skipping of infeasible subtables

Alternatively, we assume now that reducing protection levels for temporary primary

suppressions is not an option. Then, when we process subtable (2,1)|(P2,BC), the

optimization routine cannot provide a feasible result, because (C21,A) will have to be

secondary suppression for (P2,A) in that column of the subtable. But, as pointed out

above, it is the only non-zero interior cell in its row of this subtable, and the row

margin, (C21,R) is a protected cell. We assume now the optimization-routine to

deliver a result with all cells suppressed, except for the protected and empty cells. For

this pattern, even the simple heuristic check (1) suggested in sec. 3 will fail: (C21,A) is

the only suppressed cell in the row relation corresponding to Region C21 in this

subtable. Hence, obviously the value of (C21,A) must be identical to the (assumed to

be published) value of (C21,R).

10

According to our suggestion of sec. 4, Modular should then skip the subtable

(2,1)|(P2,BC) for the remainder of the process, along with any of its “descendant”-

subtables. This means it would have to skip the following subtables as illustrated by

fig. 5 using differently shaded bars covering the respective interior cells:

 (2,1)|(P2,BC), (2,2)|(P2,I), (2,2)|(P2,A),

 (3,1)|(C21,BC) (3,2)|(C21,I), (3,2)|(C21,A).

The remaining subtables, i.e. (1,1)|(R,BC), (1,2)|(R,I), (1,2)|(R,A), (2,1)|(P3,BC),

(2,2)|(P3,I) and (2,2)|(P3,A) will be processed.

6 Summary and Final Remarks

The paper has addressed a relevant use case for software implementing secondary cell

suppression, i.e. the case where a user submits tables linked to other, already published

tables. A suppression pattern involving as secondary suppressions cells already

disseminated in an earlier publication computed on the basis of the same dataset is of

course unsafe. The protection it provides to sensitive cells in the new tables can be

easily undone (often leading to exact disclosure of sensitive cells) by users of the new

tables when taking into account the already disseminated tables. Therefore, productive

systems implementing automated cell suppression for this use case must not ignore

such risks.

At the same time, such a system must be able to provide pragmatic solutions for

hierarchically structured tables. Meaning that it must be able to identify those

subtables that can actually be released safely, or eventually at the expense of accepting

certain residual disclosure risks. I.e. accepting in particular those risk issues3 that

might already exist (in a hidden way), when disseminating – in the earlier publication

phase – results which are margins of subtables considered now, but not taken into

account in the SDC process of the earlier phase. We also suggest making the system

tolerate certain risks of inferential disclosure occurring only when an intruder

considers more than one subtable at a time. After all, this would be for the sake of

being able to offer a practical alternative to what might be practitioner’s risky

practices now, e.g. ignoring – now and then - risks of exact disclosure due to

suppression of already published cells.

While the paper has outlined our ideas and concepts, implementing a proof of concept

useable to investigate their practical efficiency is beyond the scope of this paper, but

hopefully subject of our future work.

3 I.e. risks typically due to the existence and location of zero or singleton cells that might be known to

intruders with special insider knowledge.

11

References

De Wolf, P.P. (2002), ‘HiTaS: A Heustic Approach to Cell Suppression in Hierarchical

Tables’, In: ‘Inference Control in Statistical Databases’ Domingo-Ferrer (Ed.),

Springer (Lecture notes in computer science; Vol. 2316)

De Wolf, P.P., Loeve, A. (2004), ‘Reducing the set of tables τ-ARGUS considers in a

Hierarchical Setting’, Privacy in Statistical Databases, J. Domingo-Ferrer and V.

Torra (Eds.), Springer 2004, LNCS 3050 pp. 99-109

De Wolf, P.P. and S. Giessing (2009), Adjusting the τ-ARGUS modular approach to

deal with linked tables, Data & Knowledge Engineering, Volume 68, Issue 11, pp.

1160-1174.

De Wolf, P.P. and A. Hundepool (2010), Three ways to deal with a set of linked SBS

tables using τ-ARGUS, Privacy in Statistical Databases, J. Domingo-Ferrer and E.

Magkos (Eds.), Springer 2010, LNCS 6344 pp. 66-74.

De Wolf, P.P. de, Hundepool, A., Giessing, S., Salazar, J.J., and Castro, J. (2014),

‘τ-ARGUS User's manual’, Statistics Netherlands, The Hague.

Fischetti, M, Salazar Gonzales, J.J. (2000), Models and Algorithms for Optimizing Cell

Suppression Problem in Tabular Data with Linear Constraints, in Journal of the

American Statistical Association, Vol. 95, pp 916

Fischetti, M., Salazar Gonzales, J.J. (2005), ‘A Unified Mathematical Programming

Framework for different Statistical Disclosure Limitation Methods’, in Operations

Research 53/5 pp. 819-829

Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Schulte Nordholt,E.,

Spicer, K., and Wolf, P.P. de (2012), Statistical Disclosure Control, Wiley,

Chichester, United Kingdom.

Appendix

A.1 A constellation in which a protection requirement of 𝐦𝐚𝐱(𝐩𝐥(𝑻𝟎))for a

secondary suppression from ST0 in subtable ST1 will be unnecessary large

As observed in sec. 3.1, the way Modular derives protection requirements for cells

unsafe in a subtable ST1 because they were selected as secondary suppression in

another subtable ST0 , ensures that the suppression pattern for ST1 will be computed in

such a way that the upper and lower bounds of the feasibility interval for that cell will

differ from its true value by at least q% or by the largest protection level of

suppressions in ST0, max(pl(𝑇0)).

The worst case still possible then, is that users of the protected subtable ST1 can derive

a bound 𝑦̂ for a true value y of a secondary suppressions where |𝑦 − 𝑦̂|=

12

min(
𝑞

100
𝑦, max(pl(𝑇0)), for example lower bounds 𝑦̂= 𝑦 − 𝑞 𝑦/100 or 𝑦̂= 𝑦 −

 max(pl(𝑇0)) .
If in the subtable ST0, where the cell was originally selected, this secondary and the

primary unsafe cell it protects, with, say, cell value 𝑥, are the only suppressed cells of

a table equation (and both are interior cells), the new bound 𝑦̂ can be used to derive an

upper bound for 𝑥 of (1) 𝑥 + 𝑦 − (𝑦 − 𝑞
𝑦

100
) = 𝑥 + 𝑞

𝑦

100
 or (2) 𝑥 + 𝑦 −

(𝑦 − max(pl(𝑇0))) = 𝑥 + max(pl(𝑇0)).
Then, if the protection level of the primary unsafe cell, pl(𝑥), is close to 𝑦 and 𝑞 is

small, this bound will be the one of case (1), and it will be much too close. The unsafe

cell would be underprotected.

On the other hand, if 𝑦 is large, then max(pl(𝑇0) can be smaller as 𝑞 % of 𝑦 and the

new bound 𝑦̂ can be the one of case (2), i.e. 𝑥 + max(pl(𝑇0)). If in that case the

protection level pl(𝑥) of the “initial” primary suppression is much smaller

as max(pl(𝑇0)), the max(pl(𝑇0) protection level will be much larger than necessary

to provide protection to cell value 𝑥.

A.2 Details of the illustrative example of sec. 5:

Why Modular is likely to use an unnecessary large protection level for the

temporary primary suppression (P2,A) and how this causes infeasibility of the

instance

As mentioned in sec. 3.1, Modular uses as protection levels for a temporary primary

suppression the minimum of a fixed percentage q of its cell value and the maximum

protection level of all primary suppressions in this other subtable.

In the instance of sec. 5, the largest protection level of unsafe cells in subtable

(1,1)|(R,BC) is 20 (relating to cell (P1,O)). As in this simple instance obviously

{(P2,O), (P2,I), (P1,I)} are protecting (P1,O), in principle they should directly inherit

that protection level.

However, the fourth secondary suppression (P2,A) in subtable (1,1)|(R,BC) which is

secondary suppression to (R,A), should in principle inherit the protection level of

(R,A), assumed to be 4 in the instance. (P2,A) turns into a temporary primary

suppression when processing for example subtable (2,1)|(P2,BC). With the (in the

instance) correct protection level 4, (C22,A) (cell value: 5) would be selected to

protect (P2,A) in this subtable. Afterwards the process would continue and finally lead

to the secondary suppression pattern presented in fig. 4.

But actually, we obtained the pattern of fig. 4 using the -Argus full optimization

algorithm (“Optimal”). Modular, on the other hand, as explained above, would in fact

use as protection level for the temporary primary suppression (P2,A) the minimum of a

fixed small percentage q of its cell value (1000) and the maximum of the protection

13

levels in the subtable (1,1)|(R,BC) which is 20 and thus larger than 5. So, the small

percentage q would have to be at most 0,5% , otherwise (C22,A) would be too small to

be accepted as secondary suppression. In that case, (C21,A) (cell value 995), would be

the only acceptable candidate secondary suppressions. But this causes a problem:

(C21,A) is the only non-zero interior cell in its row of the (2,1)|(P2,BC) subtable, and

the row margin, (C21,R) is a protected cell. This means, protection of (P2,A) with

protection level larger than 5 in subtable (2,1)|(P2,BC) is infeasible! In fact, current

versions of Modular (Version 4.1.7, for example) abort when attempting to protect this

instance.

	SDC2021_Day2_Giessing_A.pdf
	Abstract

	SDC2021_Giessing_deWolf_etal__FrozenCellProblem.pdf

