

Differential privacy and noisy confidentiality concepts for European population statistics

2021 Joint UNECE/Eurostat Expert Meeting on SDC, 1 – 3 December 2021 *Tabular data session*

Fabian BACH
European Commission – Eurostat
Unit F2 – Population and migration

Outline

- 1. Intro: evolution of SDC (in population tables)
- 2. Noisy concepts: bottom-up and top-down
- 3. Risks: exploiting and massive averaging
- 4. Utility: (noise) tail wagging the (statistic) dog
- 5. Outro: the 2021 EU census picture

Intro: evolution of SDC (in population tables)

20th century lore:

- must protect individuals
- therefore treat small counts...
- ... and ensure consistency...
- ... and ensure consistency...
- ... and ensure consistency...

				7
SEX \\ POB*	Total	Country	Outside	Н
Total	42	35	7	НП
Male	22	С	С	Н
Female	20	С	С	۲

^{*} Place of birth (POB)

→ looks easy, but is generally neither simple nor efficient

Intro: evolution of SDC (in population tables)

21th century state of the art:

database reconstruction theorem (<u>Dinur and Nissim, 2003</u>)

Too many statistics, published too accurately, allow full & accurate reconstruction of all the input microdata...

(example e.g. in <u>U.S. Census Bureau, 2018a, 2018b</u>)

Intro: evolution of SDC (in population tables)

21th century state of the art:

database reconstruction theorem (<u>Dinur and Nissim, 2003</u>)

Noisy concepts: top-down

Differential privacy (DP) picture:

introducing global privacy budget ε (<u>Dwork et al., 2006</u>)

Noisy concepts: top-down or risk-driven

Differential privacy (DP) picture:

- introducing global privacy budget ε (Dwork et al., 2006)
- promise: strong global privacy guarantee ... but local noise size?

42

Noisy concepts: bottom-up

... a closer look at **single statistic** level – e.g. total population in the area:

Noisy concepts: bottom-up

... a closer look at **single statistic** level – e.g. total population in the area:

Noisy concepts: bottom-up or utility-driven

... a closer look at **single statistic** level – e.g. total population in the area:

protective noise added: ± 2

Noisy concepts: bottom-up or utility-driven

Utility driven picture:

- parametrising local noise impact at single statistic level
- promise: strong utility guarantees ... but global privacy level?

Noisy concepts: bottom-up or utility-driven

Noise distributions – part 2: how long is the tail?

Risks: exploiting table constraints

Now would you bet all your money on a guess for the true count of the ...

☐ ... total population?

☐ ... total females?

☐ ... total foreign-born?

SEX \\ POB	Total	Country	Outside
Total	42	37 = <mark>35+2</mark>	7
Male	23	15 = 17-2	4
Female	21	16 = <mark>18</mark> -2	3

each count with noise variance V = 1

and noise bound E = 2

How often does this happen?

of constraint n-tuples in output x $Pr(noise = \pm E)^n$

Risks: exploiting table constraints

→ Knowing the full output, the risk can be quantified systematically – e.g. for the 2021 EU census output:

m: number of 3-tuples needed in output to get ca. one *E*-disclosive noise pattern

black boxes showing where *m* exceeds the number of available 3-tuples for Malta (dashed) and Germany (solid)

Risks: massive averaging

• How many independent observations *t* of "total population" are in this table?

- \Box t=1
- \Box t=2
- \Box t=3
- t=4

SEX \\ POB	Total	Country	Outside
Total	42	37 -	- 7
Male	23	15	4
Female	21	16	3

each count with noise variance V = 1

average variance:

$$\bar{V} = \frac{k}{t^2}V = \frac{9}{4^2}1 = 0.5$$

European Commission

Risks: massive averaging

→ Knowing the full output, also this risk can be quantified systematically – e.g. for the 2021 EU census output:

intersection of α = 68% contour with smallest k/t² value (with SPSN)

α: c.l. of obtaining correct rounded integer count after averaging

Risks: massive averaging – DP picture

→ Knowing the full output, also this risk can be quantified systematically – e.g. for the 2021 EU census output:

intersection of $\alpha = 68\%$ contour with smallest k/t² value (without SPSN)

α: c.l. of obtaining correct rounded integer count after averaging

Utility: (noise) tail wagging the (statistic) dog

- 2021 EU census: ca. 110 000
 Local Administrative Units
 (~ municipalities), of which
 - ➤ 43 395 with <500 people
 - ➤ 8 502 with <100 people
 - ➤ 866 with <20 people
- Could we accept here e.g.
 Pr(|noise|>100) = 0.1% or more?
 - ☐ Yes

Utility: (noise) tail wagging the (statistic) dog

mainly a problem of unbounded noise

Recall: Noise magnitude bound parameter E, "cutting off" the tail, is **forbidden** in strict ε -DP

• E.g. 2020 test setup of <u>U.S. Census Bureau (2019)</u> with moderate tabular $\varepsilon = 0.1$

	2011 census	strict ε-DP
Total	30	-17
Male	20	-1
Female	15	-9

Cidamón, La Rioja, Spain ES230 26048

Utility: (noise) tail wagging the (statistic) dog

mainly a problem of unbounded noise

intersection of $\alpha = 68\%$ contour for Malta with E = 20

 α = 68% contours of getting ca. one LAU count noise > E for Malta (dotted), France (dashed), whole EU (solid)

Outro: the 2021 EU census picture

• risk + utility constraints on tabular ε for whole 2021 EU census output

Outro: the 2021 EU census picture

- whole 2021 EU census output
- risk constraints on bottom-up parameter space V – E
- utility controlled directly by
 V and E (utility-driven)
- e.g. cell key method recommended for 2021 EU census (ESSnet, 2017, 2019)

Thank you

© European Union 2021

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Slides 5-7 and 11: CD stack icon, source: photo by <u>lilieks</u> from <u>FreeImages</u>; Slide 20: map section, source: screenshot from <u>OpenStreetMap</u>; Slide 19: view of Cidamón, source: photo by <u>Bigsus</u> from <u>Wikipedia</u>; Slide 19: EU census icon, source: <u>Eurostat</u>; Slide 21: European Statistical System logo, source: <u>Eurostat</u>

Key references (1)

Ashgar and Kaafar (2019)	H. J. Ashgar, D. Kaafar, <i>Averaging Attacks on Bounded Noise-based Disclosure Control Algorithms</i> (Proceedings on Privacy Enhancing Technologies; 2020 (2))
Dinur and Nissim (2003)	I. Dinur, K. Nissim, Revealing Information while Preserving Privacy (PODS '03: Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems)
Dwork et al. (2006)	C. Dwork, F. McSherry, K. Nissim, A. Smith, <i>Calibrating Noise to Sensitivity in Private Data Analysis</i> (Journal of Privacy and Confidentiality 7 (3):17-51; 2017)
ESSnet (2017)	Antal, L. et al., <i>Harmonised protection of Census data</i> (Centre of Excellence on Statistical Disclosure Control, Eurostat CROS portal, 2017)
ESSnet (2019)	De Wolf, PP. et al., <i>Perturbative confidentiality methods</i> (<u>Centre of Excellence on Statistical Disclosure</u> <u>Control, Eurostat CROS portal, 2019</u> and <u>github.com/sdcTools</u>)
Marley and Leaver (2011)	J. K. Marley, V. L. Leaver, A Method for Confidentialising User-Defined Tables: Statistical Properties and a Risk-Utility Analysis (ISI Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS060))
Petti and Flaxman (2019)	S. Petti, A. Flaxman, A. (2019), Differential privacy in the 2020 US census: what will it do? Quantifying the accuracy/privacy tradeoff (Gates Open Research 2020, 3:1722)
Rinott et al. (2018)	Y. Rinott, C. M. O'Keefe, N. Shlomo, C. J. Skinner, Confidentiality and differential privacy in the

dissemination of frequency tables (Statistical Science, 33(3):358-385; 2018)

Key references (2)

Ruggles et al. (2018)	S. Ruggles et al., <i>Differential Privacy and Census Data: Implications for Social and Economic Research</i> (AEA Papers and Proceedings, vol. 109, May 2019)
Santos-Lozada et al. (2020)	A. R. Santos-Lozada, J. T. Howard, A. M. Verdery, <i>How differential privacy will affect our understanding of health disparities in the United States</i> (PNAS June 16, 2020 117 (24))
Thompson et al. (2013)	G. Thompson, S. Broadfoot, D. Elazar, <i>Methodology for the Automatic Confidentialisation of Statistical Outputs from Remote Servers at the Australian Bureau of Statistics</i> (UNECE Work Session SDC, 2013)
U.S. Census Bureau (2018a)	S. L. Garfinkel, J. M. Abowd, C. Martindale, <i>Understanding Database Reconstruction Attacks on Public Data</i> (ACMQueue, Vol. 16, No. 5 (Sep/Oct 2018): 28-53)
U.S. Census Bureau (2018b)	J. M. Abowd, Staring-Down the Database Reconstruction Theorem (Joint Statistical Meetings, Vancouver, BC, Canada, July 30, 2018)
U.S. Census Bureau (2019)	L. Garfinkel, Deploying Differential Privacy for the 2020 Census of Population and Housing (Joint Statistical Meetings, US Census Bureau, Washington, DC, 2019)

