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SEX \\ POB* Total Country Outside

Total 42 35 7

Male 22 17 5

Female 20 18 2

20th century lore:

• must protect individuals

• therefore treat small counts…

• … and ensure consistency…

• … and ensure consistency…

• … and ensure consistency…

 looks easy, but is generally neither simple nor efficient

Intro: evolution of SDC (in population tables)

SEX \\ POB* Total Country Outside

Total 42 35 7

Male 22 17 5

Female 20 18 2

* Place of birth (POB)

SEX \\ POB* Total Country Outside

Total 42 35 7

Male 22 C C

Female 20 C C



21th century state of the art:

• database reconstruction theorem (Dinur and Nissim, 2003)

Too many statistics, published too accurately, allow full & accurate 

reconstruction of all the input microdata…

(example e.g. in U.S. Census Bureau, 2018a, 2018b)

Intro: evolution of SDC (in population tables)



21th century state of the art:

• database reconstruction theorem (Dinur and Nissim, 2003)

Intro: evolution of SDC (in population tables)
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Noisy concepts: top-down

Differential privacy (DP) picture:

• introducing global privacy budget ε (Dwork et al., 2006)

ε ≈ 1

0.01100



Noisy concepts: top-down or risk-driven

Differential privacy (DP) picture:

• introducing global privacy budget ε (Dwork et al., 2006)

• promise: strong global privacy guarantee … but local noise size?
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… a closer look at single statistic level – e.g. total population in the area:

Noisy concepts: bottom-up
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protective noise added: ± 1

total uncertainty: ± 2.2



… a closer look at single statistic level – e.g. total population in the area:

Noisy concepts: bottom-up
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… a closer look at single statistic level – e.g. total population in the area:

Noisy concepts: bottom-up or utility-driven
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Noisy concepts: bottom-up or utility-driven

Utility driven picture:

• parametrising local noise impact at single statistic level

• promise: strong utility guarantees … but global privacy level?
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• Noise distributions – part 2: how long is the tail?

Noisy concepts: bottom-up or utility-driven
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• Now would you bet all your money on a guess for the true count of the …

 … total population?

 … country-born males (= 17)

 … total females?

 … total foreign-born?

• How often does this happen?

Risks: exploiting table constraints

SEX \\ POB Total Country Outside

Total 42 37 = 35+2 7

Male 23 15 = 17-2 4

Female 21 16 = 18-2 3

# of constraint n-tuples in output x   Pr(noise = ±E)n

fixed by output tables fixed by noise parameters V and E

each count with noise variance V = 1

and noise bound E = 2



 Knowing the full output, the

risk can be quantified

systematically – e.g. for the 

2021 EU census output:

Risks: exploiting table constraints

m: number of 3-tuples needed in output 

to get ca. one E-disclosive noise pattern

black boxes showing where m exceeds  

the number of available 3-tuples for 

Malta (dashed) and Germany (solid)



• How many independent observations t of “total population” are in this table?

 t = 1

 t = 2

 t = 3

 t = 4

• average variance:

Risks: massive averaging

SEX \\ POB Total Country Outside

Total 42 37 7

Male 23 15 4

Female 21 16 3
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Risks: massive averaging

 Knowing the full output, also 

this risk can be quantified 

systematically – e.g. for the 

2021 EU census output:

without with

“Same Participants Same Noise”

intersection of α = 68% contour with 

smallest k/t2 value (with SPSN)

α: c.l. of obtaining correct rounded 

integer count after averaging



Risks: massive averaging – DP picture

 Knowing the full output, also 

this risk can be quantified 

systematically – e.g. for the 

2021 EU census output:

without with

“Same Participants Same Noise”

intersection of α = 68% contour with 

smallest k/t2 value (without SPSN)

α: c.l. of obtaining correct rounded 

integer count after averaging



• 2021 EU census: ca. 110 000 

Local Administrative Units

(~ municipalities), of which

43 395 with <500 people

8 502 with <100 people

866 with <20 people

• Could we accept here e.g.

Pr(|noise|>100) = 0.1% or more?

 Yes

Utility: (noise) tail wagging the (statistic) dog

 No



• mainly a problem of unbounded noise

Recall: Noise magnitude bound parameter E, “cutting off” the tail, is forbidden in strict ε-DP

• E.g. 2020 test setup of U.S. Census Bureau (2019) with moderate tabular ε = 0.1

Utility: (noise) tail wagging the (statistic) dog

Cidamón, La Rioja, Spain
ES230_26048

source: Wikipedia

source: OpenStreetMap

2011 census strict ε-DP 

Total 30 -17

Male 20 -1

Female 15 -9

https://en.wikipedia.org/wiki/Cidam%C3%B3n
https://www.openstreetmap.org/search?query=cidamon#map=10/42.5834/-2.8400


Utility: (noise) tail wagging the (statistic) dog

• mainly a problem of unbounded noise

intersection of α = 68% contour 

for Malta with E = 20

α = 68% contours of getting ca. 

one LAU count noise > E for 

Malta (dotted), France (dashed), 

whole EU (solid) 



• risk + utility constraints on tabular ε for whole 2021 EU census output

Outro: the 2021 EU census picture

too large tailsmassive averaging

ε
0.3

0.10.8
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• whole 2021 EU census output

• risk constraints on bottom-up 

parameter space V – E

• utility controlled directly by

V and E (utility-driven)

• e.g. cell key method

recommended for 2021 EU 

census (ESSnet, 2017, 2019)

Outro: the 2021 EU census picture
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Thank you
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