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Abstract. First the paper delimits various statistical confidentiality concepts that often

get mixed up, such as risk measure, noise distribution, and output mechanism. Then some

noise distributions and output mechanisms currently discussed for population statistics and

censuses are analysed from typical risk and utility perspectives. We also present methods

to infer quantitative limits on generic noise parameters, like noise variance and magnitude

bound. The paper finally notes that strictly differentially private approaches appear over-

constrained by such a combined risk/utility analysis in typical census scenarios like EU

2021, i.e. there is no straightforward parameter choice to simultaneously ensure acceptable

risk and utility properties of the statistical output.

1 Background

This paper addresses noise-based approaches to statistical confidentiality in official
population statistics, including a differential privacy (DP) angle. While there is
ample literature introducing DP (e.g. (Dwork, McSherry, et al., 2006; Dwork and
Roth, 2014)), a first strict line is drawn here between DP as a risk measure, and
differentially private (noisy) output mechanisms that are engineered to manifestly
guarantee a given DP level. However, many other noisy output mechanisms, using
bounded or unbounded noise distributions, can be set up to give at least a relaxed DP
guarantee too (Dwork, Kenthapadi, et al., 2006; Rinott et al., 2018). For instance,
the cell key (CK) method originally proposed by Fraser and Wooton (2005), Marley
and Leaver (2011), and Thompson, Broadfoot, and Elazar (2013) can be turned into
a (relaxed) DP mechanism (Bailie and Chien, 2019). On the other hand, strictly DP
output mechanisms require unbounded noise distributions with infinite tails, which
may have particularly negative effects on utility.

This paper aims to first address all these different notions separately, and then
to present a consolidated discussion from both risk and utility perspectives. A focus
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on census-like statistics is chosen because of the current global relevance (2020/2021
census round), and because unweighted counts simplify technical discussions without
major loss of generality in the key issues. In the context of some noisy approaches,
e.g. based on DP as for the 2020 U.S. census (Abowd, 2018) or on the CK method
recommended for the 2021 EU census (Antal et al., 2017), we also outline some
analysis that may help setting up noisy mechanisms and parameters for particular
output scenarios of official population or census statistics.

2 Concepts and terminology

We give here a short summary of key concepts and terms used throughout the paper.
A more comprehensive introduction to each concept is provided in annex A.

The database reconstruction theorem by Dinur and Nissim (2003) states,
in a nutshell, that the size of random noise added to statistical output from a
given microdata database should scale with the total output complexity (amount of
information released). Otherwise there is a risk that the entire input database may
be reconstructed accurately from that output; see Garfinkel, Abowd, and Martindale
(2018) for an illustrative example.

Risk measures (in the sense used in statistical confidentiality) aim to quan-
tify individual information leakage from statistical outputs. Ideally, risk measures
work with minimal or no assumptions on output specifics, thus enabling wide com-
parability of risks across output classes and protection methods.

Differential privacy (DP) is such a powerful risk measure, first proposed by
Dwork, McSherry, et al. (2006) in the wake of the database reconstruction theorem.
The concept is appealing from a risk-aware view because it gives a DP guarantee
to each individual contributor of a given statistic; cf. annex A.1. More specifically,
Eq. (7) defines a strict ε-DP guarantee with a single privacy budget measure ε, and
a relaxed (ε, δ)-DP guarantee with a second measure δ quantifying the potential
leakage from a strict guarantee.

Noise distributions are probability distributions over the range of the sta-
tistical outputs of interest, e.g. non-negative integers in population counts. A noise
distribution is designed as part of an output mechanism, which then uses it to draw
a dedicated random noise term x to be added to each statistical value in the output.
Typically, risk and utility considerations influence the design shape of the distribu-
tion, where examples in annex A.2 include manifestly ε-DP distributions and those
used by the cell key method (Marley and Leaver, 2011).

Bounded noise comes from a noise distribution with a parameter E > 0
such that Pr (|x| > E) ≡ 0, i.e. limiting the magnitude of any noise term x. Note
importantly that strict ε-DP, in contrast to (ε, δ)-DP, does not allow E < ∞ (see
annex A.2). A key goal of this paper is to quantify specific disclosure risks of bounded
noise (section 3.1), but also utility problems of unbounded noise (section 4).
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Same participants–same noise (SPSN) is a principle to decide whether
the noise term added to a given output is drawn afresh from the noise distribution,
or reused from a lookup table (Fraser and Wooton, 2005; Thompson, Broadfoot, and
Elazar, 2013). It was introduced to forestall averaging attacks—which works only
to some extent, as discussed in section 3.2.

(Noisy) output mechanisms should be thought of as complex functions
taking an entire database as input and returning the complete set of publishable
output statistics (e.g. a set of tables, or a sequence of custom queries). Noisy
output mechanisms work by injecting random noise in one way or the other but
must—importantly—also account for noise composition across the entire output, as
explained in annex A.3 (cf. scaling law of the database reconstruction theorem).
Conceptual dichotomies emerge between

• static mechanisms (entire output fixed before publication) vs. flexible mecha-
nisms (interactive system allowing user-defined queries to some extent);

• manifestly DP mechanisms (using a manifestly DP noise distribution so that
the DP composition theorem1 plays out) vs. other mechanisms (global DP
guarantee must be inferred manually2);

• risk-driven parametrisations (noise parameters transparently linked to risk
measures, e.g. DP measures ε and δ used as parameters) vs. utility-driven
parametrisations (noise parameters transparently linked to user interests, like
global count-level noise variance V and bound E in the CK method).

3 Various risk aspects

While typical disclosure risks in population statistics relate to small table counts re-
vealing unique personal characteristics, after Dinur and Nissim (2003) the discussion
has partly moved to database reconstructions risks. Nevertheless, a personal data
breach within a default legal understanding3 would always entail a (reconstructed)
database record to be accurately matched onto a natural person—which seems not
straightforward (Ruggles et al., 2019). In any case, noise injection can mitigate these
risks, where Theorem 5 of Dinur and Nissim (2003) suggests a scaling of noise size
with the complexity t of the statistical output.4 E.g. Asghar and Kaafar (2020) have
recently elaborated two typical attacks exploiting fixed noise size in a flexible output

1Theorem 3.16 of Dwork and Roth (2014); cf. section 7 of Rinott et al. (2018) for an application
to population count tables.

2E.g. Bailie and Chien (2019) compute the (ε, δ)-DP guarantee of a CK setup.
3E.g. in the EU context under Regulation (EU) 2016/679 (GDPR, OJ L 119, 4.5.2016, p. 1).
4This is sometimes used to argue for DP mechanisms where such scaling is built in through the

composition theorem (footnote 1; cf. e.g. Asghar and Kaafar, 2020), but at least the strict ε-DP
scaling seems to be overprotective (see annex A.3).
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mechanism with scaling complexity. Each of these attacks is now addressed in turn,
with the central point being that fixed noise of sufficient size is not a problem for
fixed t, i.e. static output mechanisms.

3.1 Utility-driven parametrisation: bounded noise

The first attack in Asghar and Kaafar (2020) exploits extreme noise patterns in
constrained n-tuples with generic bounded noise protection. Normally the noise
bound E should be non-public, so the first step is to disclose the exact value of E.

Revealing the bound The attack of Asghar and Kaafar (2020) relies on m t
output 3-tuples of noisy observations with independent noise but respecting a linear
constraint. The type of 3-tuples is not important, e.g. a sex breakdown including
total count {F,M, T} with expectation E(F +M−T ) = 0 so that F +M−T values
are sampling the noise distribution. This gives an estimator for the noise bound

Ê =
⌈∣∣∣∣F +M − T

3

∣∣∣∣⌉, (1)

where the probability of revealing E correctly from a single 3-tuple is fixed by the
noise distribution as p1 := Pr[|F + M − T | > 3(E − 1)].5 Given p1, the number of
independent 3-tuples needed to infer E at confidence level α is

m =
⌈ log(1− α)

log(1− p1)
⌉
'
⌈ 1

p1

⌉
for α = 68 % and p1 � 1. (2)

Results of Asghar and Kaafar (2020) are for uniform noise only, but in general m will
depend heavily on p1 and thus on the particular noise distribution. For instance, in
CK-like methods p1 is fixed by the p-table (Thompson, Broadfoot, and Elazar, 2013)
and thus by V and E parameters, which allows to control the required complexity m.
Fig. 1 illustrates m over the typical V –E space in a generic CK setup using the p-
table tool recommended for the 2021 EU census (De Wolf et al., 2019b).6

Note that m converges to the uniform limit for increasing V > E (because the
p-table converges to the uniform distribution with maximum variance V = E(E +
1)/3), but diverges quickly for decreasing V < E (because large noise magnitudes
become increasingly unlikely). This suggests that CK setups with moderately large
E . 10 and considerably smaller V (e.g. E = 5 to 10 and V = 2) perform as “quasi-
unbounded” noise on attempts to disclose E. In conclusion, Asghar and Kaafar
(2020) have argued that E cannot be sufficiently protected, but it was shown above
that this depends critically on the noise distribution and relative choice of V and

5E.g. uniform noise ∈ {−E,E} gives p1 = 20/(2E + 1)3 by simple combinatorics (Asghar and
Kaafar, 2020).

6The setup is ‘generic’ because we use the implemented generic p-table generating algorithm
that maximises entropy under the sole constraints of fixed V and E (cf. Giessing, 2016). If p-tables
are further tailored to specific needs, e.g. adding more constraints, this may affect p1 and thus m.
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Figure 1: Heat map showing the number m of 3-tuples required to infer E at con-
fidence level α = 68 % over the V –E parameter space of CK-like methods (and
p1 ' 1/m, cf. Eq. (2)). Black boxes highlight the parameter settings where m ex-
ceeds the number of independent 3-tuples (i.e. sex breakdowns) available in the 2021
EU census output of Germany (solid) and Malta (dashed).

E: while uniform noise seems E-disclosive, generic bounded noise distributions,
manifestly (ε, δ)-DP or not, can be set up to protect E effectively while keeping
strong utility guarantees (moderate variance and hard noise bound). But only if E
is known accurately one can search the output for extreme noise patterns revealing
true counts, e.g. +E on each internal count of an n-tuple and −E on its margin,
where again the abundance of such patterns depends on p1 and thus on V and E.
Note finally that such an attack cannot be “aimed” at specific statistics of interest;
it is limited to wherever extreme noise patterns happen to occur. Targeted attacks
must pursue other strategies, addressed in section 3.2.

Heuristic parameter constraints To generalise this, a heuristic risk con-
straint can be inferred on the V –E parameter space: to avoid E-disclosure, choose
V and E for fixed m (i.e. static output mechanism) such that the E disclosure risk
according to Eq. (2) is below 68 %, even when all available 3-tuples are used. The
respective contours are added to Fig. 1 for Germany (most independent sex 3-tuples)
and for Malta (fewest independent sex 3-tuples). Such a limit can always be set by
requiring the noise distribution to satisfy p1 . 1/m (static output property). Note
that this constraint is very conservative: even if E is disclosed correctly, there are
then only mp1 = O(1) 3-tuples in the whole output where the noise can be removed.

3.2 All noisy mechanisms: Massive averaging

The second attack of Asghar and Kaafar (2020) aims to remove the noise successively
from certain sets of table cells (‘histogram reconstruction’). The concept underlying
such attack classes is massive averaging, to which any noise method with constant
variance is susceptible. This is illustrated by the (inverse) Chebyshev inequality:

Pr(|x| < ξ) ≥ 1− κVar(x)

ξ2t
, (3)
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With SPSN Without SPSN
Statistic t k (DE) k (MT) t k (DE) k (MT)

total 2775 8.6× 107 2.1× 106 6378 9.7× 107 2.6× 106

SEX 1376 2.8× 107 7.1× 105 3105 3.2× 107 8.4× 105

AGE.M 926 3.0× 106 7.9× 104 2281 3.4× 106 9.7× 104

GEO.L 766 5.4× 105 5.4× 105 1734 6.6× 105 6.6× 105

SEX×AGE.M 458 9.6× 105 2.6× 104 1097 1.1× 106 3.2× 104

Table 1: The top five output statistics with the largest number t of IRRs in the
2021 EU census output: apart from the ‘total’ national population and its ‘SEX’
breakdown (into F and M as in section 3.1), ‘AGE.M’ is the medium-detail age
breakdown (by five-year bands), and ‘GEO.L’ is the low-detail geographic break-
down (by NUTS 2 regions); ‘SEX×AGE.M’ is the two-way breakdown by SEX and
AGE.M. k depends on the number of territorial units in the geographic breakdowns,
so we list largest (Germany) and smallest (Malta) results.

where x is the averaged (unbiased) noise over t independent observations of the
same statistic of interest, Var(x) the variance of each individual noise term, κ a
constant factor counting how many outputs had to be summed on average to obtain
the statistic (e.g. κ = 2 for t bi-partitioned observations), and ξ a small parameter
(e.g. ξ = 0.5 for accurate disclosure of an integer count). The t scaling comes from
the averaging, so if Var(x) is constant in t, the average always becomes accurate for
sufficient t. More precisely, Eq. (3) implies that the noise must scale as Var(x) ∼ t,
i.e. noise of O(

√
t), to prevent this. This is consistent with the scaling law of Dinur

and Nissim (2003) (cf. section 6 of Asghar and Kaafar, 2020).
Counting redundancies Massive averaging works on redundant representa-

tions of the same target statistic in the output, but with independent noise such
that x is random and Eq. (3) plays out. E.g. Asghar and Kaafar (2020) rely on t
user-defined independent bi-partitions of the same variable. Then the noise of any
target statistic broken down t times by these bi-partitions can be removed by aver-
aging over t sums of the bi-partitions. Note that only the SPSN principle (section 2)
assumed here to be present requires the use of n-partitions in the first place; without
SPSN the adversary could just query t times the target statistic directly. Clearly the
scenario of Asghar and Kaafar (2020) is an example of a badly curated flexible out-
put mechanism. The situation is quite different with a static output mechanism: in
this case the independent redundant representations (IRR) of each output statistic
can be counted in advance, and curated if needed.

2021 EU census example To illustrate the above means, one can do the
full IRR counting exercise on the complete 2021 EU census output. For any given
output statistic targeted by averaging, Eq. (3) suggests κ/t ≡ k/t2 as an averaging
risk measure, where t is the number of IRRs being averaged and k is the total
number of independent counts (i.e. noise terms) contributing to the IRR average.
Annex C describes step by step how all IRRs of any statistic contained in a given
output can be analysed systematically to count its t and k, with and without SPSN
invoked. For illustration, Table 1 lists the top five output statistics by number t of
respective IRRs available—showing that the most redundant statistics are totals and
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Figure 2: Heat maps of the k/t2 vs. noise parameter space showing the Gaussian-
modelled probability α of averaging a single output count correctly, for the CK
variance parameter V (left) and the DP privacy budget ε per single count (right).
Both plots also show the Gaussian-modelled α = 68 % contour (bold line) and
Chebyshev’s lower limit at α = 68 % (dashed line), as well as (dotted lines) the
smallest optimised k/t2 values found in the 2021 EU census output with SPSN
(k/t2 ' 0.087) and without SPSN (k/t2 ' 0.012).

basic demographic/regional breakdowns, and that SPSN reduces the redundancies
(both no surprise). However, the search for the most risky target statistics requires
an optimisation step (described in annex C.3), because generally the smallest k/t2

value is found by averaging only a subset of the available IRRs. Here we only give
the smallest optimised values found in the 2021 EU census output: with SPSN it
is k/t2 ' 0.087 (for the one-way AGE.M breakdown of the Luxembourgers), and
without SPSN it is k/t2 ' 0.012 (for the total population of any Member State).

Heuristic variance constraint Fig. 2 shows the averaging success risk α,
computed from a Gaussian model with variance k/t2×V for the averaged noise7, as
a heat map over a plane confronting the count-level variance parameters V (l.h.s.)
resp. ε (r.h.s.) with the averaging risk measure k/t2. Staying on the blue side of the
α = 68 % contour means that the chance of averaging a target statistics correctly
would be less than 68 %, for any k/t2 value corresponding to that target statistic.
The smallest k/t2 values found in the 2021 EU census output are drawn too, so that
a lower bound on V (upper bound on ε) is given by the intersection of the α = 68 %
contour with the smallest k/t2 line (with or without SPSN). Accordingly, a CK setup
with V & 3 and SPSN is sufficient to reduce the averaging risk of even the most
risky statistic to below 68 % per count, whereas a DP setup requires count-level
ε . 0.3 (no SPSN). Note that these are very conservative constraints: the chances
of obtaining correct averages for n counts of a target histogram (e.g. AGE.M of
Luxembourg mentioned earlier) would shrink as αn, and k/t2 is generally larger.
Again the analysis can be applied to any static output: just measure the most risky
output statistic with k/t2 and fix a lower variance bound as done above with Fig. 2
(or reduce complexity to increase k/t2).

7This follows from the central limit theorem, and can be checked numerically by generating
test samples of CK noise. It is more conservative than using Eq. (3), which only gives a lower limit
on the averaging success.
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4 Specific utility aspects of unbounded noise

There are already many studies assessing utility aspects of DP output mechanisms or
testing them in statistical applications—e.g. Machanavajjhala et al. (2008), Dwork
and Smith (2010), Ghosh, Roughgarden, and Sundararajan (2012), Hsu et al. (2014),
Wang, Lee, and Kifer (2015), and Petti and Flaxman (2019). In particular, Rinott et
al. (2018) is a key reference for population statistics, but all DP noise distributions
there were truncated, so results do not cover tail effects from unbounded noise.
On the other hand, the U.S. Census Bureau announced unbounded ε-DP noise for
its 2020 census (Abowd, 2018), which triggered severe utility concerns (Ruggles et
al., 2019; Santos-Lozada, Howard, and Verdery, 2020). Petti and Flaxman (2019)
assessed some utility implications of published test setups, but explicitly left the
issue of tail effects open. This section concentrates on such tail effects.

4.1 Parameter setups

Censuses are among the most expensive national statistical exercises, serving a vari-
ety of specific research and policy purposes, so ensuring that SDC methods maintain
unique census features is critical. Therefore, in contrast to the approach of Rinott
et al. (2018) (truncating DP noise and fixing reference ε and δ values for a theoret-
ical comparison), this paper aims to assess actual parameter setups considered in a
census context. From a utility perspective, noise properties at the individual count
level are key for any kind of serious research. While utility-driven parametrisations
provide this out of the box (V values and E ranges), an effort has to be made in
DP setups to infer the ε spent at the individual count level: a global ε must be
split across all outputs, and the methods for doing this in an optimised manner can
become complex and rather non-transparent (cf. Garfinkel, 2019). Nevertheless, we
attempt to make an educated guess at the ε budget spent on a single output table
in the hypothetical U.S. census DP scenario described in Petti and Flaxman (2019).

According to the authors, discrete ε-DP noise is drawn from the two-tailed geo-
metric distribution with a global privacy budget εglobal ∈ {0.25, 0.5, 1.0, 2.0, 4.0, 8.0}
(Garfinkel, 2019; Petti and Flaxman, 2019). This global budget is then distributed
across six hierarchical geographies (Garfinkel, 2019). Certain optimisations may shift
the relative shares away from an even split, but we assume 1/6 for practical purposes
as Petti and Flaxman (2019) do. Further intricacies include that noisy total popula-
tion counts are generated for each geographic level8 and all further breakdowns are
optimised to sum to those totals. The reference also suggests that at each geographic
level, 67.5 % of the budget are spent on the more important person aggregate tables.
In summary, we assume

εtable = 67.5 %× 1/6× εglobal ' 10 %× εglobal, (4)

8Except at State level, where the U.S. Constitution requires the U.S. Census Bureau to publish
unperturbed totals (Petti and Flaxman, 2019).
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so εtable ∈ {0.025, 0.05, 0.1, 0.2, 0.4, 0.8} for tabular (count-level) ε-DP noise. This
corresponds to noise sizes at single count level of

V ∈ {3200, 800, 200, 50, 12.5, 3.125},
√
V ∈ {56.6, 28.3, 14.1, 7.1, 3.5, 1.8}.

For comparison, the CK variances tested for the 2021 EU census round are in the
area V ∈ [1, 5] (Antal et al., 2017), so barely touching the above DP range at its most
risky end (εtable = 0.8). Moreover, no tails effects > E are present by definition.

4.2 Demographics at high geographic detail

Accurate demographics at a high geographic detail is one of the key unique census
features in many world regions. For instance, the 2021 EU census round will cover ca.
110 000 Local Administrative Unit (LAU) with a total population of roughly 4.5×108

people across the whole EU.9 Coincidentally this matches well with U.S. census
outputs at tract level, covering ca. 75 000 geographic units (Garfinkel, 2019) with
a total population of 3.3 × 108 people. However, the following analysis is intended
solely to discuss effects of a practical ε-DP noise scenario on key EU census outputs.
Whether any of the conclusions may apply to tract-level U.S. census outputs depends
critically on the correctness of parameter assumptions, Eq. (4), and also on the
comparability of population distributions across EU LAUs vs. U.S. tracts.

The statistics of LAUs There is an extreme variety of total population by
LAU, with populated units ranging fromO(1) residents (450 LAUs with< 10 people)
to 3.3 × 106 residents (Berlin; in total 14 LAUs with > 106 people). Now the key
point is that statistics across LAUs is only part of the purpose of these census
results; they are also the only source to obtain accurate demographic information
on individual LAUs. For this purpose, even very unlikely but very large noise outliers
can have severe, maybe unacceptable, consequences. Furthermore, if the method of
adjusting inner tables to their geographic totals after drawing noise is applied (Petti
and Flaxman, 2019), a single large noise outlier on a given small LAU total would
systematically and heavily distort all statistics published for that LAU. Therefore,
the subsequent focus is on LAUs with counts < 500 illustrated in Fig. 3.

The demographics of LAUs To add a demographic element, we include a sex
breakdown into females, males and a total, i.e. SEX = {F,M, T} as in section 3.1.
This is the spine of all LAU-level person tables in table groups 3 and 8 of the 2021
EU census programme10. It also reflects a possible notion of picking more important
‘aggregate tables’ to which all further breakdowns would then be adjusted (Petti and

9The LAU data used for this section are 2011 census outputs from all EU Member States as
available at ec.europa.eu/CensusHub2.

10Commission Regulation (EU) 2017/712 of 20 April 2017 establishing the reference year and
the programme of the statistical data and metadata for population and housing censuses provided
for by Regulation (EC) No 763/2008 of the European Parliament and of the Council (OJ L 105,
21.4.2017, p. 1).
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Figure 3: Distribution of populated LAUs with ≤ 500 residents across the total
population count (left) and across EU Member States (right).

Flaxman, 2019). To cover both large distortions of totals as well as of sex balances,
the counts of F , M and T are treated independently. In total, there are ∼ 167 000
LAU counts of F , M or T < 500 in the 2011 data.

Estimating distortions The basis for ε-DP noise analysed here is the discrete
two-tailed geometric distribution, Eq. (10), with an ε range given in Eq. 4. However,
in this ε range the discrete distribution already converges well to the continuous
Lap(1/ε). The cumulative inverse distribution function of Lap(1/ε) can be used to
calculate the probability for the noise magnitude |x| to exceed a certain threshold
E:

Pr(|x| > E|ε) = exp (−εE) . (5)

This probability is plotted in the lower-right of Fig. 4 as a function of ε inside the
relevant range, and for E ∈ {20, 50, 100}. Now Eq. (5) can be convoluted with the
distribution of LAU counts (left plot in Fig. 3) to estimate how many LAU counts in
each bin will end up with noise exceeding a given absolute relative error RE = 20, 50
or 100 %. These binned estimates can be tested by actually sampling some noise on
the LAU data, and counting occurrences of RE magnitudes above a given threshold.
Fig. 4 (left column) overlays the estimates with counts found in the noise-sampled
data. Clearly the analytic estimates describe very well the noise-sampled data.

Distortions of single counts Looking now at the actual distortions in the left
column of Fig. 4, one finds a sizeable dependence on ε, which is not surprising due
to the exponential noise scaling in Eq. (5). In fact, noise distortions of single counts
in these LAU statistics may be said to become manageable from ε > 0.4 (and we
do not show the upper end of the ε range, ε = 0.8, for this reason). However, for
ε . 0.1 there are many LAU counts expected with |RE| > 50 % or even > 100 %.

For instance, with ε = 0.025 (
√
Vtable = 56.6) there are 1 648 observations

above 100 affected by ±100 % or more, and still 87 observations above 200 with
RE± 100 % or more. Recall that every third of these observations describes a total
count, and every 6th a total count with RE < −100 %, thus wiping out the whole
population of that LAU. The largest LAU where this happens is Aragnouet, France,
with originally 239 residents (now −711). The situation does improve with ε = 0.1

11Negative output counts are a typical consequence of standard DP noise. These may be lifted
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Figure 4: Log-linear estimates for frequencies of relative error (RE) magnitudes
exceeding 20 % (blue), 50 % (yellow) and 100 % (orange) occurring in LAU counts,
by total count: bins show the analytic estimate obtained from Eq. (5), while lines
show the actual distortion frequencies found in the data with noise sampled.
The rows vary ε = 0.025 (top) to 0.1 (middle) to 0.4 (bottom). The left column
counts single observations (F , M or T ) exceeding a given RE, while the right column
counts LAUs where F , M and T all exceed RE in the same direction.
The lower right histogram (F , M and T distorted in the same direction for ε = 0.4) is
almost empty and thus replaced by a plot illustrating Eq. (5): log-linear Pr(|x| > E)
as a function of ε with E = 20 (orange), 50 (yellow) and 100 (blue). Vertical dashed
lines indicate ε choices from Eq. (4), while horizontal dotted lines show 1 over the
number of LAUs with T ≤ E = 20, 50 or 100.
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(
√
Vtable = 14.1), but we still find 122 observations above 40 and 11 observations

above 60 with RE±100 % or more. The largest depopulated LAU is again in France,
Mélagues with originally 63 residents (now −9).

All these findings on single counts are disconcerting in their own right, but there
is an added danger: if the total count is distorted so severely and inner table cells
are adjusted to the new total12, entire LAU populations may disappear from the
census output. If inner cells are not adjusted, constraints like F + M = T can be
exploited to improve knowledge a bit; e.g. T̂ = (F +M + T )/2.

Distortions of entire LAUs Such ad hoc ‘repair’ estimates exploiting 3-
tuple constraints will not always help. This is illustrated by the situation where
F , M and T are all distorted in the same direction (“broadband distortions”), so
the distorted 3-tuple is internally consistent and no ad hoc estimate can improve
the user’s knowledge. To quantify this, one can count all LAUs affected by such
broadband distortions; results are shown in the right column of Fig. 4. For ε = 0.025
there are 28 LAUs above 40 residents and 4 LAUs above 80 with a broadband
distortion −100 % or more. The largest such LAU is Landremont, France with
F = 61 → −8, M = 74 → −26 and T = 135 → −83. For ε = 0.1, most
broadband distortions of ±100 % only occur in the lowest count bin (0, 20], but
there is one above: this time Spain, Cidamón with F = 15 → −9, M = 20 → −1
and T = 30→ −17. Broadband distortions ±20 % still occur for 61 LAUs with 100
or more residents. The largest LAU where this happens is Ellend, Hungary with
F = 112→ 74, M = 94→ 65 and T = 206→ 158. Even distortions around ±20 %
may have significant policy impacts at local level.

Heuristic utility constraint on ε-DP noise Clearly the results above just
paint in vivid colours what unbounded count-level noise size

√
V & O(10) means

for the accuracy of individual counts . O(102). Recall that acceptable accuracy of
such counts—at least for the small-area output statistics—is a design requirement
for most censuses. This can be turned into a utility constraint on unbounded ε-DP
noise distributions by requiring that a given bound Eα is not exceeded at confidence
level α for t output counts. The corresponding minimal privacy budget εα to be
spent on this output is

εα(Eα|t, α) >
1

Eα
log

(
t

1− α

)
. (6)

A reasonable choice could be Eα = 20 and t the number of LAUs in an EU Member

to 0, as proposed e.g. by Ghosh, Roughgarden, and Sundararajan (2012) and planned for the 2020
U.S. census (Petti and Flaxman, 2019). However, this generally introduces a (normally small)
overall bias to the output and may have other negative impacts on output utility, pointed out by
Rinott et al. (2018). In any case, the discussion is not relevant here: all negative counts mentioned
in this section can be replaced by 0 without changing any conclusion.

12I.e. in this example, noise on T would be fixed but noise on F and M would be post-processed
to minimise the violation of the 3-tuple constraint F +M = T .
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Figure 5: Log-log plot of εα as a function of Eα, Eq. (6), for α = 68 % and three
LAU multiplicities: EU-27 with tLAU ' 1.1× 105, France with tLAU ' 3.7× 104 and
Malta with tLAU = 68.

State. This would give a (weak) utility guarantee that no LAU total count is dis-
torted > 20 at c.l. = α. Fig. 5 illustrates the implications on count-level ε values. In
particular, the previous notion is confirmed that individual ε & 0.6 (large countries
like France, Germany) resp. ε & 0.3 (small countries like Malta) would have to be
spent at least on the small-area outputs to maintain unique census utility.

4.3 Discussion

The simple analysis above has shown that tail effects of unbounded noise distribu-
tions, such as strictly ε-DP ones, may cause grave distortions at small geographies.
This starts to kick in severely around count-level εtable < 0.4 for most countries
(> O(103) LAUs), and points at similar conclusions as in Santos-Lozada, Howard,
and Verdery (2020): with unbounded noise it is very difficult to maintain a certain
minimum utility per individual small area unit, for every small area unit in the
output. Of course, one could now enter the game of redistributing privacy budgets
between geographies or between other statistics, but such fine-tuning is beside the
point because it is extremely difficult, on principle, to avoid large tail distortions in
an output corner that may turn out to be critical. There is an obvious solution that
avoids any of these concerns or haggling of budgets between output statistics: don’t
use unbounded noise for population statistics where single-count accuracy is key.

5 Risk vs. utility for upcoming censuses

To integrate the findings of sections 3 and 4 for the scope of the 2021 EU census, the
parameter constraints of Figs. 1, 2 and 5 can be combined into a global picture of the
generic noise parameter space: Fig. 6 illustrates that utility-driven parametrisations
using individual count-level variance V and noise bound E can be set up within a
range that avoids all risk/utility constraints assessed in this paper (e.g. V ' 2 to 3
and 5 . E . 10). On the other hand, risk-driven approaches such as strictly ε-DP
mechanisms with unbounded noise are severely constrained by combining risk (mas-
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Figure 6: Generic noise parameter space highlighting regions that survive all
risk/utility constraints (blue/yellow): the utility-driven generic V –E plane (left)
and the risk-driven (count-level) ε range (right). Yellow regions are not excluded;
they rather indicate that such setups may work in certain circumstances, or with
slightly relaxed constraints. Note that the ε range (right) is a one-parameter space,
where a utility constraint is taken from Eq. (6) (note different E scales). The SPSN
principle is assumed to be invoked on the left, but not on the right (DP default).
On the right, no blue region survives all constraints conservatively: averaging (grey
lines showing ε for smallest k/t2 dashed and for next-smallest solid) and Eα < 20
at α = 68 % (black lines showing the Eα(ε) curve for Malta solid and for France
dashed). When relaxing certain constraints (e.g. E68 & 20 and/or slight averaging
vulnerability), a small yellow band ε ∈ [0.27, 0.37] remains.

sive averaging) and utility (small-area accuracy) considerations. In particular, only
a narrow window around count-level ε ' 0.3 remains with acceptable compromises.

Global constraints as in Fig. 6 do depend on the exact (static) output, but in
general such constraints can always be obtained systematically from the static output
structure. This is what makes the risks controllable: if no satisfying parameter
setup is found, the output can be curated to relax the constraints. While DP as
a risk measure may contribute to an assessment of appropriate noise amounts, the
flexibility of ε-DP mechanisms is heavily limited with just a single parameter (the
privacy budget). It is the presence of a second parameter—the noise bound E, or δ
in (ε, δ)-DP mechanisms—that adds flexibility to arbitrate risk vs. utility.13

6 Conclusions

While traditional SDC methods in population statistics mainly focused on small
counts at high risk of direct re-identification (e.g. suppressing those, etc.), powerful
theoretical results of Dinur and Nissim (2003) have meanwhile shown that entire
microdata databases can often be reconstructed accurately from too detailed output
tables, thus exposing rare records even if small output counts were treated. These
results suggest that random noise methods are the most effective counter-measure,
where the amount of noise should scale with output detail. This scaling rule implies

13For instance, CK offers some margin to increase noise by tuning V while keeping E fixed. In
ε-DP mechanisms one can only reduce ε, which often has severe consequences on utility.
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a first important notion: flexible output mechanisms (where the complexity is not
fixed a priori) require some kind of noise scaling and are thus much harder to realise
within reasonable risk and utility constraints. On the other hand, static output
mechanisms (pre-fixed complexity) allow for a diligent curation, including controlling
risks and assessing risk/utility trade-off to fix a static noise amount. Unless imposed
by external constraints, a move from a static to a flexible output mechanism should
be considered only with utmost care.

Differential privacy (DP) is a useful concept to quantify risk irrespective of a
particular output scenario, and hence to compare risk levels consistently between
various SDC approaches (Dwork, McSherry, et al., 2006; Dwork and Roth, 2014).
DP risk measures may thus contribute to a broadly based SDC assessment. More-
over, DP provides for automatic noise scaling with output complexity, as required
by flexible output mechanisms. However, this paper suggests that the complexity
scaling of DP noise levels is over-protective for increasingly complex outputs, so
DP inferences on absolute noise levels should be handled with care, especially with
complex static outputs.

DP risk measures should be distinguished from DP output mechanisms, where
the latter may give strict ε-DP or relaxed (ε, δ)-DP privacy guarantees with ε the
total privacy budget spent on the entire output. However, strictly ε-DP mechanisms
must employ unbounded random noise distributions, while relaxed (ε, δ)-DP or not
manifestly DP mechanisms can have bounded distributions. It is shown that in
static output scenarios, typical generic risks such as margin exploits and massive
averaging are controllable with bounded noise, (ε, δ)-DP or not. Conversely, the
unbounded noise of strictly ε-DP mechanisms may lead to severe utility damage
when the noise amount is tuned up to evade averaging risks. More generally, the
fact that ε-DP mechanisms only have a single parameter costs a lot of flexibility.

Censuses are big national investments for comparably narrow purposes, not nec-
essarily to answer any question any user may have on any characteristics of any sub-
population. This suggests a static output mechanism with a utility-driven parametri-
sation, which allows to maximise utility within purpose scope while controlling risks
carefully. Finally, if particular SDC mechanisms jeopardise unique census features,
they are bluntly unfit for the purpose. For the scope of the 2021 EU census round,
bounded noise from the cell key method (recommended in the European Statistical
System (Antal et al., 2017)) is found suitable to protect outputs in a controlled way:
The generic parameter space (noise variance and magnitude bound) is constrained
by different risk or utility requirements, but various setups remain feasible. Such se-
tups can obtain a relaxed (ε, δ)-DP guarantee, if needed. On the other hand, strictly
ε-DP mechanisms are severely constrained, with only a small parameter window re-
maining for a possibly acceptable compromise. It seems strict ε-DP guarantees are
overpriced (in utility) at least for census-like scenarios.
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A Extended preliminaries and concepts

A.1 Differential privacy: a risk measure

Differential privacy was first proposed by Dwork, McSherry, et al. (2006), in the
wake of the database reconstruction theorem. In plain words, its paradigm is that
every query result (output) should be robust against addition to, or removal from,
the input database of any single record, e.g. picking one record and removing it
from the database should not significantly change any outputs (hence differential
privacy). This is the individual privacy guarantee, and its immediate attraction is
formulated by Dwork (2011): “Any mechanism satisfying this definition addresses
all concerns that any participant might have about the leakage of his or her personal
information, regardless of any auxiliary information known to an adversary: Even
if the participant removed his or her data from the dataset, no outputs (and thus
consequences of outputs) would become significantly more or less likely.”

There are various mathematical definitions of differential privacy, so we repeat
here the most generic one, introducing both strict as well as relaxed (or approxi-
mate) differential privacy in one go as Dwork, Kenthapadi, et al. (2006): given two
neighbouring input databases d and d′ that differ exactly in one record, any mecha-
nismM(·) acting on the universe of input databases to generate outputs must fulfil

Pr(M(d) ∈ S) ≤ eεPr(M(d′) ∈ S) + δ (7)

for all subsets S ⊆ Range(M) to be δ-approximately ε-differentially private or short
(ε, δ)-DP, where ε and δ are parameters establishing the differential privacy level.
For δ → 0, Eq. (7) reduces to a definition of strictly ε-differentially private or short
ε-DP mechanisms.

The definition implies that, for any single output s ∈ Range(M)—singleton S in
Eq. (7)—with nonzero probability on d, the probability to obtain s from d′ should
also be nonzero for the mechanism to be possibly ε-DP. This suggests some kind
of noise injection applied by M as an option to comply with Eq. (7). While noisy
Ms are discussed in more detail in annex A.3, it is important to note here that
ε-DP or (ε, δ)-DP are attributes or qualifiers of any given M, thus measuring the
individual information leakage from any thinkable output. Therefore, ε and δ are
handy risk measures to compare different output scenarios and noise mechanisms,
as done e.g. by Rinott et al. (2018).

Finally, it is interesting to note how differential privacy embraces the fundamental
law of statistical disclosure control (formalised by Dwork and Naor, 2010 as rigorous
impossibility of Dalenius’s privacy goal), which essentially states that any provision
of useful statistical information necessarily entails a nonzero trailing risk of disclosing
information on some individuals14, i.e. that the trade-off between privacy and utility

14Interestingly, including potentially individuals that did not even contribute to the statistics,
as pointed out e.g. by Dwork (2011).
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is fundamental and not contingent. With the privacy budget parameter ε, differential
privacy provides a transparent and intuitive “turning knob”—but no immediate
guidance on how exactly to adjust it.

A.2 Noise distributions: bounded or unbounded?

Recall that the discussion is confined to outputs representing unweighted person
counts, or sets of such counts (e.g. contingency tables). Then the most generic output
mechanismM(·), in the sense of annexes A.1 and A.3, returns an ordered k-tuple of
frequencies representing the answers to k individual counting queries passed to M.
Further let M̃(·) denote an exact output mechanism without any noise injected,

so that Range(M̃) = Nk
0. Then by noise distribution we mean the probability

distribution underlying the process of drawing an additive (pseudo) random noise

term x ≡ (M− M̃)(d) for k = 1 and any given d. Among the popular options
are e.g. Laplace, Gaussian, or entropy-maximising distributions, which may come in
various flavours and with auxiliary constraints, but many properties can be captured
by just two generic attributes: the noise variance Var(x) and its magnitude bound
|x| ≤ E (≤ ∞). Here we just give a crude classification based on the DP categories
introduced in annex A.1.

ε-DP noise distributions manifestly comply with Eq. (7) for any possible
singleton S (single output count) with δ = 0. It is easy to show (Dwork, 2011) that
e.g. the Laplace distribution

Lap (∆/ε) : x ∼ ε

2∆
exp

(
−ε|x|

∆

)
(8)

with Var(x) = 2(∆/ε)2 fulfils this requirement, where ∆ is the global sensitivity of

M̃ defined as

∆ := max
d,d′

k∑
i=1

∣∣∣M̃(d)i − M̃(d′)i

∣∣∣ (9)

with i running through output k-tuple indices. Clearly for k = 1 and unweighted
person counts, ∆ = 1 and x ∼ Lap(1/ε) in this case.15 Now this distribution is
over R, so that Range(M) = Rk which may return non-integer person counts. This
can be lifted this by using the discrete two-tailed geometric distribution (Ghosh,

15Apart from unweighted counts, the issue with ∆ is that it is generally hard to obtain, and
arbitrarily difficult for some queries on weighted or magnitude data: e.g. Bambauer, Muralidhar,
and Sarathy (2014) argue that in an average income query the global sensitivity is theoretically
driven by the highest-income person in the world, because the query result must be robust also
against addition of that person to the database. Naturally such a ∆ drives the noise through
the roof and renders all outputs useless. On the other hand, capping ∆ arbitrarily dilutes the
individual privacy guarantee.
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Roughgarden, and Sundararajan, 2012)

x ∼ 1− exp(−ε)
1 + exp(−ε)

exp(−ε|x|), (10)

which gives Range(M) = Zk and approximates to Lap(1/ε) for ε� 1.
Note finally that noise distributions, continuous or discrete, must be unbounded

to be ε-DP. To see this, assume bounded noise with Pr(x > E) = 0. Then in

Eq. (7), choose without loss of generality d > d′ and s = M̃(d) + E (i.e. k = 1).

Thus, Pr(M(d′) = s) = 0 as s − M̃(d′) = E + 1 and the inequality requires
δ ≥ Pr(M(d) = s) > 0 to hold, which contradicts δ = 0.

(ε, δ)-DP and other noise distributions In a sloppy manner, most noise
distributions that are not ε-DP are (ε, δ)-DP: If a distribution fails the strict ε-
DP requirement, Eq. (7) with δ = 0, a δ > 0 can usually be found to establish
(ε, δ)-DP. In particular, unbounded noise distributions can usually be truncated to
give (ε, δ)-DP, where δ depends on the resulting probability distribution close to its
discontinuity (Rinott et al., 2018). Also for cell key noise of Thompson, Broadfoot,
and Elazar (2013), taking variance Var(x) ≡ V and noise bound |x| ≤ E as input
parameters, an (ε, δ)-DP level can be inferred (Bailie and Chien, 2019). However,
the issue is not about finding a δ but about dealing with its value: clearly it should
be δ � 1 but how small exactly? For instance, δ < 1/n is stated in Dwork and
Roth (2014), but higher values are also discussed in Rinott et al. (2018). It is also
argued there that often the choices of δ (and ε) are policy decisions, not statistical
decisions.

Bounded vs. unbounded noise Why select an unbounded noise distribu-
tion? As shown above, if a strictly ε-DP output mechanism is ultimately desired,
the underlying noise distribution must be unbounded. Moreover, Asghar and Kaafar
(2020) recently claimed that a tight noise bound poses additional disclosure risks.
However, sections 3 and 4 will argue that unbounded noise may come at too high a
price on utility, while the additional risks of bounded noise can be controlled.

A.3 Noisy output mechanisms

Noise distributions handle the special case of a single scalar output, i.e. a single call
to M with k = 1. In contrast, a generic (noisy) output mechanism denotes a more
powerful and complexM that ideally accounts automatically for noise composition
across all outputs. In particular, from a DP perspective an ε-DP noise distribution
does not automatically constitute an ε′-DP output mechanism with ε = ε′; as argued
below, an additional layer of output curation or privacy budget management is
needed. But before outlining various output mechanisms, some prerequisites are
introduced.

Disjoint outputs: histograms and tables are lists of counts breaking down
the input database into sub-populations, i.e. (using notation introduced in an-
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nex C.1) a single call to an M : d 7→ TA where A = {ai} is a list of disjoint
breakdown categories contained in d and obviously k = |A|. It is easy to see from
Eq. (9) that still ∆ = 1 despite k > 1 output counts, because addition or removal of
a single record in d can only change the single countM(d)i ≡ Tai where that record
contributes.16 In DP literature, this class of queries is called histogram queries
(e.g. Dwork, 2011), and properties transcend to multi-dimensional table outputs

M : d 7→ TA with A = {Ai} and k =
∏|A|

i=1 |Ai| but ∆ = 1 still.
Same participants–same noise (SPSN) is a principle to decide whether the

noise term added to a given output count is drawn afresh or reused from a lookup
table (Fraser and Wooton, 2005; Thompson, Broadfoot, and Elazar, 2013). It was
introduced to forestall averaging to some extent, as per Chebyshev’s inequality the
probability that t redundant noisy observations average to the true count converges
to 1 for increasing t (cf. Eq. (3)). If the noise is looked up instead to be always the
same for the same question asked, averaging over redundancies is less straightforward
(but still possible, as shown in section 3.1).17

Static output mechanisms: non-interactiveM With notions of table out-
puts and SPSN at hand, a static output mechanism without SPSN is defined here
as

M : d 7→ ∪I∈{1···M}TIP(AI) (11)

returning M tables and all marginals in a single call (P(A) is the power set of A).
Think of M returning the entire set of M = 103 population tables in the 2021 EU
census programme10 at once. If SPSN is invoked,

M : d 7→ ∪I∈{1···M}TP(AI) (12)

containing only unique cross-tabulations in the table programme, which is a much
smaller set than in Eq. (11). Then the M predefined tables can be put together for
publication from the unique outputs (e.g. collecting internal cells and all correspond-
ing marginals). This also shows how a static output mechanism can be combined
with a more flexible user interface (table builder): Just expose the unique outputs
as building blocks available for user-defined tables.

The advantage of a static output is that the curator has full control over the
output and so decides about the acceptable amount of redundancies and internal
constraints (the levers for typical disclosure attacks described in section 3) before
publication. Moreover, k and ∆ for a DP mechanism can simply be counted from
the redundancies in the output set; the full exercise is carried out in annex C, and
k and ∆ are given by Eq. (18) (without SPSN) resp. Eq. (19) (with SPSN).

16Note that we decided in annex C.1 to suppress all categories ai = total; if the total count was
included in A, ∆ = 2.

17The intricacies of defining SPSN discussed in Rinott et al. (2018) are not relevant here, because
noise independence is established contextually through the variable attributes a of a given cell count
Ta.
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Flexible output mechanisms: interactiveM It is sometimes argued (justly)
that static outputs cannot provide the full richness of d, at least not without run-
ning into the database reconstruction theorem (e.g. Dwork, McSherry, et al., 2006;
Dwork, 2011). For the scope of this paper, a flexible output mechanism is again de-
fined asM : d 7→ TA, but this time with interactive elements: the cross-classification
A = {Ai} as well as variable breakdowns Ai = {aij} are (at least to some extent)
customisable, and the user is allowed to call M t times with a series of questions
{At}. For each At the noise can be curated but a priori, t is unknown. Such an out-
put mechanism without any noise curation across t is highly susceptible to various
attacks described in Asghar and Kaafar (2020), and discussed again in section 3.2.
DP may guide a way out, but at a costly price, as shown below. It seems that, in cer-
tain scenarios such as censuses, static outputs are preferable because the objectives
are clear and limited, so that outputs can be curated accordingly.

Manifestly ε-DP output mechanisms In static outputs with an ε-DP noise
distribution, the global privacy budget ε is automatically distributed correctly across
all outputs by virtue of ∆. Customised distributions of ε are possible, using e.g. i
calls toM with εi each. Then the whole output is still ε-DP with ε =

∑
i εi through

the DP composition theorem (Dwork and Roth, 2014; Rinott et al., 2018). This is
still a static mechanism, and it is what the U.S. Census Bureau plans for its 2020
census outputs (Abowd, 2018; Garfinkel, 2019).

Flexible mechanisms can also be ε-DP through composition but are more tricky,
because ad hoc rules must be applied to distribute a global ε across t outputs. Two
approaches are usually proposed (e.g. Dwork, 2011): either cap t per user at some
value, or spend ε iteratively as εi = ε/2i, so that ε =

∑∞
i=1 εi. Both have serious

disadvantages: a cap is always arbitrary, while the iterative noise explodes quickly:√
Var(x) ' O(103) for ε = 1 and i = 10 (and assuming ∆ = 1 in each case).

Moreover, in both cases, adversaries may try to refresh their ε budget somehow.
Finally, strict ε-DP mechanisms seem to scale too steeply with complexity: For

a global ε-DP guarantee on an output of complexity t, DP composition requires that
the global privacy budget be split between all outputs, e.g. as ε/t. Then e.g. the
Lap(1/ε) noise, Eq. (8), scales as√

Var(x) =
√

2
t

ε
∼ t (13)

and not as∼
√
t, which would be sufficient from Dinur and Nissim (2003). Therefore,

ε-DP mechanisms relying on these noise distributions will over-protect outputs of
increasing complexity.18 In any case, the situation is more complicated when the

18Theorem 3.20 of Dwork and Roth (2014) provides for improved composition scaling ∼
√
t, but

the resulting global guarantee is relaxed (ε, δ)-DP only, not strictly ε-DP. Similarly, Gaussian DP
noise scales ∼

√
t (Dwork, Kenthapadi, et al., 2006; Dwork and Rothblum, 2016), but also there

the guarantee is only (ε, δ)-DP.
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noise distribution is not DP-parametrised (i.e. ε and δ are calculated ad hoc on each
single output, rather than being noise input parameters): Then the privacy budget
spent must be calculated manually across all outputs to obtain a global ε-DP or
(ε, δ)-DP guarantee.

Risk-driven vs. utility-driven parametrisations A risk-averse statistics
curator may find it desirable to publish only outputs that provide a global ε-DP guar-
antee. Manifestly ε-DP output mechanisms may thus be said to follow a risk-driven
parametrisation, because the ε parameter makes the selected level of risk/utility
trade-off transparent. However, such risk-driven DP parametrisations have their
own pitfalls: as noted in Rinott et al. (2018), the total privacy budget (value of
the global ε) is not easily fixed from statistical and/or disclosure control decisions,
and the noise scaling is over-protective as argued above in Eq. (13). Moreover, as
shown in annex A.2, unbounded noise is unavoidable if strict ε-DP is sought. In
effect, risk-driven parametrisations may generally be said to provide high trans-
parency and control on the privacy side, at the cost of low transparency and control
on utility characteristics.

On the other hand, a utility-driven parametrisation is much closer to the amount
of noise actually injected to each single output count. For instance, if the noise
variance V and its bound E are the input parameters, like in the cell key method,
users get a very transparent idea of what happened to the data: they know the
typical noise size±

√
V and that each individual count is at most±E off.19 This gives

strong utility guarantees on the output, which a risk-driven parametrisation simply
cannot provide. We argue in section 3.1 that risks are well controllable for a static
(census-like) output with utility-driven parametrisation. However, to complete the
dichotomy to the risk-driven view above, utility-driven parametrisations do generally
have drawbacks in that their corresponding privacy guarantees are not obvious or
straightforwardly accessible. For instance, Rinott et al. (2018) and Bailie and Chien
(2019) outline procedures how to translate utility-driven parameters (like count-level
noise variance and tail cut-off) into corresponding global (ε, δ)-DP guarantees, where
naturally the DP composition theorem (Dwork and Roth, 2014) is central.

B ESS recommendations for harmonised 2021 EU census
protection

Within the legal framework for EU censuses20, statistical confidentiality and SDC
measures are under the responsibility of the national statistical authorities of the

19The E parameter is usually not disclosed exactly, because its knowledge gives additional—
theoretical—disclosure risks. However, a vague communication e.g. that E . 10 is still very useful
(cf. section 4.2).

20Regulation (EC) No 763/2008 of the European Parliament and of the Council of 9 July 2008
on population and housing censuses (OJ L 218, 13.8.2008, p. 14).
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Member States, so that confidential data must not be submitted to Eurostat.21 This
means that Eurostat will not receive, maintain or process any confidential data (or
personal data in GDPR sense) related to the upcoming 2021 EU census round. This
has lead to various European Statistical System22 projects facilitated by Eurostat
and aimed at developing common ESS recommendations for harmonised methods
(Antal et al., 2017) and tools (De Wolf et al., 2019a) to protect census outputs at
the national level. These recommendations include the cell key (CK) method as a
particular mechanism implementing bounded noise (Meindl and Enderle, 2019).

During the project work, considerable efforts were made to provide more flexible
and accessible SDC tools (De Wolf et al., 2019b) but also to assess disclosure risks
vs. utility and improve the general methodology (Giessing, 2016; Enderle, Giessing,
and Tent, 2018; Enderle, Giessing, and Tent, 2020). Also the findings of this paper
(see section 5) suggest that the ESS recommended CK method stands as a good
practice, if applied correctly and consistently, featuring in particular superior utility
properties in various output scenarios with still small and controllable disclosure
risks.

Small count threshold parameter Note that the CK method formally takes
a third parameter (in addition to variance V and noise bound E), namely a threshold
js for the smallest non-zero count that may occur in the output (i.e. no output
count will be > 0 and ≤ js). This may be desirable for some national output
curators, e.g. for historical or cultural reasons. The CK method implements js in a
consistent manner without introducing biases, as opposed to näıve noise truncation
≥ 0 (Ghosh, Roughgarden, and Sundararajan, 2012; Petti and Flaxman, 2019).
However, Rinott et al. (2018) argue that a js > 0 actually increases risks and may
loosen a corresponding (ε, δ)-DP guarantee. Having a js > 0 or not does not affect
any of the arguments of this paper significantly, so we just fixed js = 0 for all
analyses presented.

The European census grid is a notable new output from the 2021 EU census
round.23 Several key census indicators will be published for each cell of a pan-
European 1 km2 grid, which poses specific new disclosure risks (see Bach, 2019 for an
overview). However, main risks relate to the possible combination of different non-
nested small areas (e.g. Costemalle, 2019), where again random noise is considered
effective (Antal et al., 2017). For the scope of this paper the grid output is not
important: the additional number of 3-tuples is negligible,24 and it does not add

21See Articles 2(5) and 4(3) of Regulation (EU) 2017/712, footnote 10.
22The joint body of Eurostat and the national statistical institutes of all EU countries and

Iceland, Liechtenstein, Norway and Switzerland. It is responsible for the development and quality
assurance of official European statistics.

23Commission Implementing Regulation (EU) 2018/1799 of 21 November 2018 on the establish-
ment of a temporary direct statistical action for the dissemination of selected topics of the 2021
population and housing census geocoded to a 1 km2 grid (OJ L 296, 22.11.2018, p. 19).

24The IRR counting in section 3.2 does not include the 1 km2 grid output (cf. annex B), but
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any redundancy to any of the other output statistics because the grid does not
overlap with administrative geographic breakdowns and it has no ‘total’.

C Massive averaging in static outputs

C.1 Output structure

In static output scenarios, all output statistics are fixed in advance. In census-like
scenarios, these are typically contingency tables which cross-tabulate several cat-
egorical variables with pre-fixed, finite sets of values (variable breakdowns). The
tables may contain margins, i.e. there may be a hierarchical structure inside the
variable breakdowns (some values are contained within other values). In particular,
let each variable breakdown contain a value “total”, which denotes the union of all
other (“internal”) values of that variable. Finally, a table cell is a distinct combina-
tion of variable values, where the cell value (without noise injection) is the number
of microdata records that are characterised by the combination of variable values
defining the cell.

Let A denote a variable breakdown represented by a finite set of discrete values
a ∈ A, where generally A = {·, total} and |A| the cardinality of A. Let A denote
an m-tuple of variable breakdowns {Ai}m, so that |A| = m, and let a ∈ A denote
an m-vector of variable values {ai}m with ai ∈ Ai ∀ i ∈ {1 · · ·m}. Then TA
represents the m-dimensional cross-tabulation of A (a table), and Ta a single table
cell thereof. Furthermore, TA′,a′′ represents the |A′|-dimensional sub-table of TA
obtained by fixing variables A′′ to values a′′, and A′ ∪̇A′′ = A. Now suppress all
ai = total, such that TA′ ⊂ TA represents the |A′|-dimensional marginal table for
a′′ = {total}|A′′|. Thus the table TA consists of

|P(A)| =
m∑
i=0

(
m
i

)
= 2m

sub-tables, including itself, all marginal tables and the total margin T , where P(A)
is the power set of A.

On the other hand, we can sum all table cells characterised by a = {am−1, am}
over all values am ∈ Am to obtain an independent redundant representation (IRR)
of the marginal cell Tam−1 , or in short-hand notation

|Am|∑
i=1

T{am−1,am,i} := Tam−1

Am (14)

and TAm−1
Am the respective marginal table. Thus, generally, TA′

A′ is an IRR of TA′
for any possible disjoint partition of A = {A′,A′}. Then the set of all IRRs of a

the additional number of complete sex 3-tuples (one per grid cell) is negligible for both section 3.1
and 2: e.g. for Germany the grid would provide another 3.6× 105 3-tuples, a 1 % effect.
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target cell Ta′ (or entire target table TA′) is given by P(A′) as {Ta′Ai}Ai∈P(A′), or

short Ta′
P(A′).

Example: Table 9.2 of the 2021 EU census programme10 is defined as

9.2: GEO.M× SEX× AGE.M× YAE.H, (15)

where GEO.M is the geographic breakdown of medium detail (NUTS 3), SEX =
{F,M, total} is the sex breakdown, AGE is the medium age breakdown (5-year
bands) and YAE.H is the highly detailed breakdown of year of arrival in the re-
porting country (by single years). This table is expressed as TA, where A =
{GEO.M, SEX,AGE.M,YAE.H}, and |A| = 4 so there are 16 possible sub-tables or
subsets of A. For instance, let A′ = {GEO.M, SEX}. Then A′ = {AGE.M,YAE.H}
and

P
(
A′
)

= {∅, {AGE.M}, {YAE.H}, {AGE.M,YAE.H}}.

Thus, we find for the table of interest T{GEO.M,SEX} four IRRs inside TA: T{GEO.M,SEX}
itself (the trivial marginal table obtained from ∅ ∈ P(A′)) as well as T{GEO.M,SEX}

{AGE.M},
T{GEO.M,SEX}

{YAE.H} and T{GEO.M,SEX}
{AGE.M,YAE.H}.

C.2 Averaging attacks

Let the static output consist of M predefined tables ∪I∈{1···M}TIP(AI). This fixes
the entire universe of independent output counts, or table cells before publication,
including all hierarchical constraints and redundancies outlined in section C.1. It is
thus possible to identify, for any given target count TIa inside the universe, all IRRs
contained in the universe, i.e. all TJa

P(AJ ) from all J ∈ {1 · · ·M} with A ⊂ AJ and
{A,AJ} = AJ . The corresponding set is

Ta(A) := ∪J∈{1···M} where A⊂AJ
TJa

P(AJ ),

A global constraint using all available redundant representations of the target count
is thus given by

TIa =
1

|Ta(A)|

|Ta(A)|∑
i=1

Ta(A)i. (16)

When the output is protected by noise injection as described in annex A, each
independent output cell will get independent noise from a given distribution with
variance V . Note that the SPSN principle introduced in annex A.3 leads to dependent
noise on all TIA and TJA with I 6= J and A ⊆ AI ∩ AJ . Thus, with SPSN we
can drop table indices I so that the entire output universe is just ∪I∈{1···M}TP(AI).
Defining a set that consists only of unique variable combinations disjoint from A

U(A) := ∪I∈{1···M} where A⊂AI
P(AI),
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the complete set of IRRs of Ta is just Ta
U(A), and Eq. (16) reduces to

Ta =
1

|U(A)|

|U(A)|∑
i=1

Ta
U(A)i . (17)

This does not hold for noise mechanisms ignoring the SPSN principle (such as generic
DP mechanisms), where independent noise is drawn for any TIA and TJA with
I 6= J , even though A is fixed, and Eq. (16) holds. Therefore, depending whether
the principle is enforced or not, Eq. (16) or Eq. (17) can be used to average over all
independent representations of the target count available in the output to obtain an
estimate T̃a. Note that in a static output scenario, no other independent represen-
tations of the target can be generated by the user: the amount of independent noise
is predefined by the complexity of {TIAI

}I∈{1···M} resp. {TAI
}I∈{1···M}.25

C.3 Disclosure risks

Eq. (3) relates the overall success probability of averaging the target count correctly
to the (constant) variance V of the noise applied to each single independent output,
where k is the number of independent outputs being summed and t is the number
of independent representations of Ta:

ka =
∑

I∈{1···M} where A⊂AI

|P(AI)|∑
i=1

|P(AI)i|∏
j=1

∣∣P(AI)ij
∣∣ and ta = |Ta(A)| (18)

resp.

ka =

|U(A)|∑
i=1

|U(A)i|∏
j=1

|U(A)ij| and ta = |U(A)|. (19)

However, Eq. (3) gives a lower limit on the averaging success probability, whereas an
upper limit would be required from a protection point of view. Therefore, to assess
averaging risks conservatively we continue the analysis under the assumption that
the cumulated noise on the averaged estimate T̃a is again Gaussian with variance

Var(T̃a) =
kaV

t2a
, (20)

so that the averaging success probability αa = Pr(|T̃a−Ta| < 0.5) can be calculated
exactly. This approximation follows from the central limit theorem and performs
well in the CK and Laplace noise scenarios discussed in this paper.7

25This is significantly different from the scenario of Asghar and Kaafar (2020), where the user can
submit many queries asking for custom bi-partitions of any available variable; in our nomenclature
this is equivalent to custom-defining A = {a1, a2}, which is impossible by assumption of this section
(static output).
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With SPSN Without SPSN
# MS TA opt. k/t2 MS TA opt. k/t2

1 LU AGE.M 0.0867 all total 0.0118
2 CY AGE.M 0.0884 all GEO.L 0.0170
3 MT AGE.M 0.0916 all AGE.M 0.0170
4 EE AGE.M 0.108 all SEX 0.0234
5 all total 0.112 all GEO.L×AGE.M 0.0237

Table 2: The top five smallest optimised k/t2 values found for EU Member States
(MS), with and without SPSN.

Eqs. (3) and (20) indicate that the ratio ka/t
2
a is a suitable measure of averaging

risk, because it fixes αa for given V . However, generally the average over all available
IRRs as in Eq. (16) or Eq. (17) does not give the lowest (i.e. most risky) ka/t

2
a,

because some IRRs require very many internal table cells to be added, thus increasing
ka and the corresponding summed noise amount disproportionately. This can be
accounted for with a simple optimisation:

1. Sort all available IRRs from low to high individual ka (fixing I and i in Eq. (18)
resp. i in Eq. (19) and carrying out the product).

2. Start averaging iteratively, including new IRRs with increasing ka one at a
time, as long as the aggregate ka/t

2
a of the average decreases.

3. The first time the aggregate ka/t
2
a increases, discard the last IRR added and

return the previous average as the optimal (i.e. most risky) one.

The risk of disclosure from averaging any target count Ta is thus fixed by the
static output complexity {TIAI

}I∈{1···M} resp. {TAI
}I∈{1···M}, as well as constant

noise variance V . This means an output curator can control for it by either reducing
output complexity or increasing V .

C.4 Results for the 2021 EU census scenario

The 2021 EU census programme (i.e. output table set) consists of M = 103 three
to six-dimensional tables10 cross-tabulating counts of natural persons by 32 differ-
ent variable breakdowns.10 While ta is fixed for every a by the table set, for any
target cell Ta without a geographic attribute ka generally depends on one or more
geographic breakdowns and thus on the reporting country, cf. Table 1. As expected,
Table 2 shows that the smallest k/t2 values (optimised as described in annex C.3)
are found for the smallest countries, where geographic margins contributing to the
independent representations have the smallest k weights. Furthermore, Fig. 7 shows
the distribution of k/t2 across all available TA whose IRRs do not depend on any ge-
ographic breakdown (mostly where A contains itself a geographic breakdown, which
is never crossed with another geographic breakdown in any of the output tables),
i.e. those k/t2 that are equally valid for all reporting countries.

Note the difference of almost an order of magnitude in Table 2 between the
smallest k/t2 when enforcing SPSN, and the smallest k/t2 when ignoring it. Also
in the distribution in Fig. 7, a sizeable share of the output statistics tends to have
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Figure 7: Histograms of the k/t2 distribution across all TA without geographic
dependence in their averages, with and without SPSN (left), and the ratio of k/t2

with and without SPSN for each of the TA (right, ratio of 1 suppressed).

smaller k/t2 without SPSN than with it.26 While the difference is not too big for
the majority of target TA, a systematic attack could first remove the noise from
the most vulnerable TA and then use those to reduce successively reduce the noise
on subsequent TA averages. Hence a conservative approach would fix V such that
every TA (even with the smallest k/t2) is sufficiently unlikely to be averaged correctly.
Section 3.2 discusses implications of this approach on generic noise parameter ranges
when protecting 2021 EU census outputs.

References

Abowd, J. M. (2018). “The U.S. Census Bureau Adopts Differential Privacy”. Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining. KDD ’18. London, United Kingdom: Association for
Computing Machinery, p. 2867. doi: 10.1145/3219819.3226070.

Antal, L. et al. (2017). Harmonised protection of Census data. https://ec.europa.
eu/eurostat/cros/content/harmonised- protection- census- data_en.
Accessed on 26 Jan 2021.

Asghar, H. J. and Kaafar, D. (2020). “Averaging Attacks on Bounded Noise-based
Disclosure Control Algorithms”. Proceedings on Privacy Enhancing Technologies
2020.2, pp. 358–378. doi: 10.2478/popets-2020-0031.

Bach, F. (2019). “Statistical Disclosure Control in Geospatial Data: The 2021 EU
Census Example”. Service-Oriented Mapping: Changing Paradigm in Map Pro-
duction and Geoinformation Management. Ed. by J. Döllner, M. Jobst, and P.
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