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Abstract 

Generation of synthetic data has shown many advantages over masking for data privacy. Depending on the 
application, data generation faces the challenge of faithfully reproducing the statistical properties of the original 
dataset. In this area, artificial neural nets are a powerful tool, because they can learn and reproduce even highly 
non-linear relations within the original dataset. Generative Adversarial Neural Nets (GANs) is a state of the art 
approach in machine learning, capable of generating data with high resemblance. GANs have been explored 
heavily with image data, but are rather unexplored in the field of tabular data sets. 
 
Here we build upon previous work by Xu et Al. (2019) employing GANs to learn to generate tabular data with 
numerical and categorical attributes. We show how this approach can be joined with differential privacy to 
provide the data holder with a privacy control mechanism. 
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Abstract: Generation of synthetic data has shown many advantages over masking for data privacy. 
Depending on the application, data generation faces the challenge of faithfully reproducing the statistical 
properties of the original dataset. In this area, artificial neural nets are a powerful tool, because they can 
learn and reproduce even highly non-linear relations within the original dataset. Generative Adversarial 
Neural Nets (GANs) is a state-of-the-art approach in machine learning, capable of generating highly 
accurate tabular data. GANs have been explored heavily with image inputs but are less developed in the 
field of tabular data sets. Here we build upon previous work by Xu et Al. employing GANs to learn to 
generate tabular data with numerical and categorical attributes. We show how this approach can be joined 
with differential privacy to provide the data holder with an incremental privacy control mechanism. 
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1 Introduction 
The quote "Data is the new Oil" by Clive Humby is a widely accepted paradigm in the 
Information age. Just like the extraction of the natural resource, the collection of data 
comes with risks: leaking confidential data can potentially be very harmful for 
individuals, companies, and societies at large. Data Maintainers do not only need to 
make sure to protect sensitive information but also need to be able to bring data on 
different systems to make it available to researchers or the public. To make this possible, 
we propose a machine learning model that can make use of Deep Learning capabilities 
to produce useful data while keeping the individuals data private using Differential 
Privacy. We know from   Ullmann et Al. [1] that generating private synthetic data can 
be very challenging, therefore it is appropriate to use techniques like Generative 
Adversarial Neural Networks. 
 

1.1 Generative Neural Network 
Generative Neural Networks (GAN) is a class of machine learning frameworks 
originally designed by Ian Goodfellow and his colleagues in 2014 [3]. These models 
aim at reproducing as accurately as possible the distribution of the data given as input. 
GANs are based composed of two neural networks that train in turn against each other, 
the Generator and the Discriminator. At each iteration, the discriminator is trained to 
differentiate between the real data and fake data, produced by the generator. In a second 
step, generator is trained to produce data passing as real data in the discriminator. Thus, 
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the discriminator successively infers how the real data looks like based on the 
performance of the discriminator. After several iterations of successive training rounds 
of discriminator and generator, the generator will reproduce the structure of the data 
very consistently, despite never having been in direct contact with it. 
GAN Models have been largely employed in a wide variety of computer vision 
applications and are the state of the art for accomplishing data generation tasks. These 
models have been so successful, because once trained, they can generate many images 
without needing to store the original data. Thus, they can be trained in one place and 
easily used in another context. This greatly simplifies the usage of such model in 
production environments, as data can just be generated on demand. However, these 
models have rarely been used with tabular data and, until now, did not consider 
anonymity of data. In this work we want to show, how these issues can be addressed, 
and we will propose a methodology capable of generating both private and accurate 
representations of tabular datasets. 
 

1.2 Differential Privacy 
Differential privacy is a definition of privacy tailored to the problem of privacy-
preserving data analysis (Dwork et Al. [5]). It formulates a mathematical guarantee that 
the output of a privacy preserving system won’t change if a single individual is added 
or removed from a dataset. This would effectively render the output of the algorithm 
resistant to attackers that want to infer attributes of individuals based on the response of 
an algorithm. We report the definition of differential privacy with some useful properties 
to later formulate our proposed method. 
 
Definition 1 (Neighbouring Datasets) Datasets D and D’ are said to be neighbouring 

if ∃x ∈ D s.t. D \ {x} = D’ 
Definition 2 (Differential Privacy) A randomized algorithm, M, is (ε, δ)-differentially 

private if for all S ⊂ O and for all neighbouring datasets D, D’: 

P(M(D) ∈ S) ≤ eε P(M(D’) ∈ S) + δ 
with O being the output space and P is taken with respect to the randomness of M. 

Differential privacy provides an intuitively understandable notion of privacy - a 
particular sample’s inclusion or exclusion in the dataset does not change the probability 
of the seen outcome: it does so by a multiplicative factor eε and an additive amount δ. 
 
Theorem (Post-processing) Let M be an (ε, δ)-differentially private algorithm and let 
f : O → O’ where O’ is any arbitrary space. Then f ◦ M is (ε, δ)-differentially private. 

The above theorem states that no matter the amount of post-processing that is applied 
to the output resulting from a differentially private algorithm, the information will 
remain (ε, δ)-differentially private. This is useful for GANs as simply proving the 
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discriminator to be differentially private will imply the generator to be differentially 
private as well. We need the discriminator and not the generator to be differentially 
private because the training of the Discriminator in GANs also updates the Generator.  

2 Background 
Our goal is to use deep learning models to generate a synthetic version of a private table 
T to be released to researchers in a controlled environment, a privacy constraint that can 
be decided by the data holder. The table dataset T contains Nc continuous columns and 
Nd discrete columns where each column is a random variable. Existing research only 
suggests a handful of models that can be employed in this setting.  
 

2.1 Tabular GANs 
The most notable deep learning models that can achieve this are GANs and 
Autoencoders (AE), but as argued in Xu et Al. [2] GANs are generally easier to integrate 
with differential privacy and show better performance over real datasets. In case of 
tabular dataset, Côté et Al. [6] suggests MC-WGAN-GP (Camino et Al. [7]) and 
CTGAN (Xu et Al. [2]) as the best models to synthesize real data. The MC-WGAN-GP 
model is an adaptation of the more common WGAN-GP model (Gulrajani et Al. [11]) 
made to handle datasets with multiple categories (Nd>1). CTGAN instead makes use of 
a conditional vector to handle multiple categories and has a particular pre-process that 
aims at making the numerical variables easier to learn. Côté et Al. [6] also show that 
MC-WGAN-GP shows slightly better performance, while CTGAN is easier to use in 
practice. The CTGAN model also provides the benefit of being able to impose a 
categorical condition on the samples to be generated. 

2.2 Differentially Private GANs 
Some effort has been put into developing differentially private GAN models, although 
not specifically for tabular datasets. The CTGAN authors point out that their model 
would be easier than an autoencoder to integrate with differential privacy by using 
PATE-GAN (Jordon et Al. [4]). PATE-GAN is a model that adapts the Private 
Aggregation of Teacher Ensemble method to implement differential privacy into a 
GAN. It is remarkable as the generator of PATE-GAN never sees any data; it only 
manages to learn based on the indication given to the student discriminator by the 
teachers. The model that the authors of PATE-GAN compare against is the DPGAN 
model (Xie et Al [8]), which uses a noisy back-propagation system to achieve 
differential privacy called DP-SGD (Abadi et Al. [9]). Like PATE-GAN, G-PATE 
(Yunhui et Al. [10]) uses the PATE system but removes the need for the student 
discriminator and instead applies PATE directly on the gradient passed to the Generator. 
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3 Our Approach 
Since not a lot of research has been put into developing and testing differentially private 
models for tabular data, we intend to expand on the claim of the CTGAN authors that 
GANs can be made differentially private. We do not explore MC-WGAN-GP further as 
CTGAN has been more thoroughly tested in several settings1 and naturally provides the 
capability for conditioning that may be of use to researchers that want to generate 
specific (or balanced) datasets.  
 
To make CTGAN differentially private we must choose one Differential Privacy system 
between the ones that we highlighted earlier. In Rosenblatt et Al. [12], the authors used 
a CTGAN with two different Differentially Privacy architectures, one achieved through 
the PATE system and the other through DPGAN. Unfortunately, they do not address in 
detail how their models work. Therefore, we will now explore the different possibilities 
and the required steps to transform CTGAN into a differentially private model. 

3.1 Pre-Processing 
The pre-processing step in CTGAN creates problems in differential privacy, as it 
embeds additional information into the model itself that must be privatized. Therefore, 
a small part of our privacy budget will be spent in ensuring that the pre-processing step 
is also differentially private. This portion of the budget can be 0, depending on the 
assumptions that we make about our private datasets. 
 

3.1.1 Categorical Attributes and Conditional Loss 
In the pre-processing phase CTGAN transforms the categorical attributes in their 
respective 1-Hot-Encoded versions. The network then computes the univariate 
frequency of these categorical attributes and uses this input to guide the generator 
towards which categorical attributes are to be used for generation. During training, the 
generator uses the chosen conditional vector samples to create a new tuple according to 
the categorical attributes decided by the given condition. The Conditional Loss, an 
additional loss based on the conditioned portion, is computed to force the generator to 
adhere to the scheme. From an information perspective, this loss propagates the 
information of the frequency of the categorical attributes into the generator. In our 
interest of guaranteeing differential privacy, this may cause a problem. We can: 
 

1. assume that the univariate categorical frequencies are publicly known 
2. enforce the model to use privatized frequencies  
3. disable the conditional loss altogether 

 

 
1 https://sdv.dev/SDV/ 
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The first option is viable, but it should be kept in mind that if the categorical attributes 
are not privatized their frequency will be considered public by the model. Instead, 
choosing to follow either point two or three from our options achieves privacy: having 
the categorical frequencies be already private before entering the generator will ensure 
privacy on the loss thanks to the post-processing theorem, while disabling this loss will 
make sure that the Generator cannot learn these frequencies. The third case is simpler 
to achieve, but it leads to a much worse utility. As the ablation study from the CTGAN 
authors highlight, removing the conditioning results in a 36% performance decrease. 
Therefore, it is the second point achieves the highest utility while maintaining privacy. 
We can do so by adding to the pre-processing phase a (private) noise to the computed 
frequencies by using Differentially Private algorithms to sample histograms or more 
flexible schemes such as Private-PGM (McKenna et Al. [13]).  

3.1.2 Numerical Attributes and Gaussian Mixture Models 
The pre-processing of the Numerical Attributes is also troublesome, as it relies on a 
Variational Gaussian Mixture Model (VGMM). Each numerical attribute is encoded 
into a pair, one representing the position of the value within a mode and the other the 
mode to which it belongs. This means that CTGAN also accounts for the presence of a 
Decoder which will know the univariate distribution of the categorical attributes. If the 
CTGAN model is shared with a third party, the decoder will directly disclose this 
information. To address this issue, we can: 
 

1. Hand out generated data instead of the model itself 
2. Ensure that we only move the model in trusted environments 
3. Make the VGMM have differentially private outputs 
4. Assume that the univariate distributions are already known 

 
As in the previous section, we can either protect this information with noise by using a 
private version of VGMM, like the one presented in Gautam et Al. [14]. We also want 
to note that CTGAN uses VGMM for only 1 iteration and not until convergence. 
Therefore, the privacy budget to be spent on privatizing this algorithm will be small.  

3.2 CTGAN Learning  
CTGAN’s architecture will learn the individuals if kept non-private. To avoid this, we 
need to embed one of the GAN solutions illustrated in section 2 for differential privacy. 
It is important to note that CTGAN makes use of the PAC-GAN (Lin et Al. [15]) 
framework which would make the privacy guarantee of any system refer to the size of 
the PAC (10 by default) instead of the single sample. To avoid this issue, we will always 
consider a PAC of 1. 
 
The possible choices to make CTGAN be differentially private are: 
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PATE-GAN teacher and student in CTGAN: The PATE system implemented in 
PATE-GAN does not consider Wasserstein loss and can’t easily be extended for a 
WGAN-GP such as CTGAN. To eliminate this issue, we must convert CTGAN to 
use the standard Binary Cross Entropy Loss (BCE). Moreover, it is theoretically 
possible to divide the dataset into shard and assign each one to a teacher, but this 
can lead to unstable behaviour. It can happen that a certain conditional vector is 
invalid - as a certain category might not be present - in a dataset shard assigned to a 
teacher. Solving this would require stripping CTGAN of the conditioning or build 
the data shards in a non-random way. The latter would break the PATE privacy 
guarantee. Instead, stripping CTGAN of the conditioning portion would incur in a 
significant utility loss. Therefore, PATE-GAN is not well suited for our setting. We 
also know that it has not been tested in highly dimensional settings. 
 
G-PATE in CTGAN: This framework, differently from PATE-GAN, allows us to 
use the WGAN-GP loss as the teacher vote does not decide the category of a sample. 
It is instead the gradient that should be passed back to the generator that is 
discretized with PATE. However, using this approach with the conditional 
generator of CTGAN is not possible as we would have to sample from the 
conditional generator and use the same samples for each Teacher, thus creating an 
instability problem in case one Teacher does not see a particular category of a 
sample. Just like PATE-GAN, this approach might not be well suited for our setting 
where we employ multi-categorical attributes and imbalanced datasets. 
 
Using DP-SGD in CTGAN: this is the simplest approach, which does not require 
any modification to CTGAN as it only involves the substitution of the Discriminator 
optimizer with one that injects noise directly into its gradients. This approach 
unfortunately provides the worst privacy bound among the presented models. 
Therefore, it might be inefficient especially for particularly low privacy budgets.  

 
We propose to use DP-SGD to make CTGAN be differentially private without stripping 
the model of any features. This will allow us to test the capabilities of CTGAN when 
embedding differential privacy. We will refer to this approach as DP-CTGAN. 

4 Experimental Results 
To test the performance and utility loss of the CTGAN model against its differentially 
private version, we will use the benchmarking suite with which CTGAN was evaluated 
in the first place. Developed by MIT, SDGym2 is a framework to benchmark the 
performance of synthetic data generators. It contains metrics to test single and multiple 

 
2 https://github.com/sdv-dev/SDGym 

https://github.com/sdv-dev/SDGym
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table generation for machine learning and publication purposes. Metrics include 
statistical and machine learning utility measures as well as privacy metrics. 

4.1 Experimental Setup 
We run CTGAN, our proposed DP-CTGAN and a baseline model on various metrics 
using multiple datasets.  
 
Datasets: We selected 4 commonly used machine learning datasets (Adult, Census, 

News and Credit) from the SDGym repository3, with features and label columns in 
a tabular form. General characteristics datasets that we are going to use are 
highlighted in Table 1.1.  

 
Name Continuous 

Columns 
Binary 
Columns 

Multi-Class 
Columns 

# Records Task 

Adult 6 2 7 33K C 
Census 7 3 31 300K C 
Credit 29 1 0 284K C 
News 45 14 0 40K R 

Table 1.1 Dataset in our benchmark 
Models: We compare the utility and privacy loss of the proposed DP-CTGAN model 

against a standard CTGAN and we use an Identity Generator (a generator that 
outputs the original dataset) as a baseline model. To better compare the performance 
of the privacy scheme, we will consider the univariate attributes in our dataset be 
publicly know. The GANs will be trained with the same hyper parameters, using a 
batch size of 500 and each model will be trained for 100 epochs. For DP-CTGAN, 
we will train using different levels of noise multipliers (nm = 10-5, 0.01, 0.1, 1) to 
achieve different privacy levels and we will report the mean epsilon of the models 
over the different datasets in the results section. The objective of this evaluation is 
to show that we start from the same performance of CTGAN when injecting a very 
low noise (10-5) and we end up with a strong privacy requirement (ε ~ 1) when 
injecting a high noise. For all models and evaluations, δ is always set to 10-3 
(indicating a very high estimated resistance to adversarial attacks in our privacy 
guarantee). 

 
Utility Metrics: As in Xu et Al. [2], given that evaluation of generative models is not a 

straightforward process, where different metrics yield substantially diverse results 
(Theis et Al. [16]), our benchmarking suite evaluates multiple metrics on multiple 
datasets. With our dataset, we have a machine learning task to use to evaluate 
synthetic data generation method via machine learning efficacy to test for the utility 
of the Synthetic Dataset. Figure 1.1 illustrates the evaluation framework. The 

 
3 http://sdv-datasets.s3.amazonaws.com/index.html 
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Machine learning models that we will use to perform this evaluation are: Decision 
Trees, Ada-boost, Logistic Regression, and Multi-Layer Perceptron.  

Figure 1.1 Evaluation of Utility of the synthetic dataset against the real dataset 
 
Detection Metrics: We will use a Detection approach to evaluate the distinguishability 

of the Real dataset from the generated one. The two metrics of our choice build a 
Machine Learning Classifier that learns to tell the synthetic data apart from the real 
data. The classifier is evaluated using Cross Validation, measuring one minus the 
average ROC AUC score obtained. The machine learning models of choice for this 
evaluation are SVC Detection and Logistic Detection, as shown in Figure 1.2.  

Figure 1.2    Evaluation of Distinguishability of synthetic data from the Real data 
 
Privacy Metrics: This family of metrics measures the privacy of a synthetic dataset by 

positing the question: given the synthetic data, can an attacker predict sensitive 
attributes in the real dataset? This is accomplished by fitting an adversarial attacker 
model on the synthetic data to predict sensitive attributes from “key” (assumed as 
known) attributes and then evaluating its accuracy on the real data. This metric is 
defined as one minus the probability of making the correct attack on the real data. 



 
 

9 
 

For each of our datasets, we attack the attributes separately by fitting a SVM and 
Random Forest models for categorical attributes and a Support Vector Regressor 
(SVR) and Linear Regression for numerical attributes. The evaluation scheme is 
depicted in Figure 1.1. 

 
An important remark is that these metrics intend to measure the machine learning 
performance of synthetic data, but in principle any metric can be used to compare 
against other methods of generating private tabular datasets. 

4.2 Results 
We evaluated our models using the above-mentioned framework. We summarize the 
benchmark results in Table 2. We split the results in the table based on the tasks which 
the metrics aim to achieve. We further split in ‘Classification’ and ‘Regression’ tasks 
for ML Utility. We also split ‘Numerical’ and ‘Categorical’ metrics in the privacy case. 
 

Method Noise Utility  Detection Privacy  Epsilon (ε) 
  Classification Regression  Numerical Categorical  
Identity N/A 0.78 0.014 1 0.26 0.62 Inf 
CTGAN N/A 0.59 -0.08 0.7 0.32 0.66 Inf 
DPCTGAN 0.00001 0.575 -0.11 0.65 0.51 0.72 >100000 
DPCTGAN 0.001 0.565 -0.23 0.61 0.56 0.74 7453 
DPCTGAN 0.1 0.6 -2.85 0.34 0.59 0.84 78 
DPCTGAN 1 0.58 -12.5 0.15 0.78 0.97 0.94 

 
Table 2      The average results of our tests for the different model initializations 

 
Based on the noise that we inject into the network, we achieve different levels of 
privacy. Table 2 depicts that the metrics for utility, detection have the highest values on 
low noise cases. This is to be expected, because we expect the models without noise to 
reproduce the data faithfully. In turn, the Privacy metrics have the lowest values in those 
cases as one can deduce individual’s information from the dataset. As the noise levels 
are increased, we see that privacy rises as the information in the synthetic data is 
decreasingly useful for predictions about individuals. The same holds true for detection; 
as the noise level increases the synthetic data becomes increasingly different from the 
real data.  For utility, we see that the regressions values (R2) are quite sensitive to the 
noise level. Especially in the case where privacy level is very high (ε < 1), we observe 
highly negative R2 values, meaning that the models built on synthetic data do not fit the 
original data anymore. This is expected, since injecting noise directly into the network 
weights like in DPGAN provides the worst privacy bound estimation among the DP 
modalities that we presented earlier, therefore leading to a low utility. We see instead 
that in the classification case performance is not impacted as much, but it is not much 
better than random classification (0.5) even in CTGAN without noise. 
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5 Conclusions 
In this work we designed and tested a differentially private way of generating accurate 
synthetic tabular datasets. We built from CTGAN and analysed different schemes to 
enforce privacy in the model directly and evaluated our proposal against the identity 
function and CTGAN itself for different choices of noise. We show that our proposal 
for integrating differential privacy progressively reduces utility to achieve better privacy 
constraints. We therefore show that the CTGAN framework can be associated with 
differential privacy.  
As a future work, we want to research the possibility of extending the PATE framework 
to the WGAN to provide a better privacy/utility trade-off in this setting. It would be also 
interesting to analyse the possibility of using different base GAN models (such as MC-
WGAN-GP) to achieve privacy and compare against the stability of the training 
procedure. 
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