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Abstract 

AI models are trained on large datasets. Where the training data is sensitive, the data holders need to consider 
risks posed by access to the training data and risks posed by the models that are released. 
The first problem can be considered solved: there are multiple tested solutions delivering secure access to 
sensitive data for research purposes. These include robust ‘statistical disclosure control’ (SDC) procedures for 
checking the confidentiality risk in outputs released from the secure environment. However, these SDC 
procedures are designed for statistical outputs. It is not clear how they relate to AI model specification created 
within the secure environment. 
Similarly, there is a small but growing literature on re-identification and other risks from AI models trained on 
personal data. However, this does not consider the operational circumstances which might limit opportunities 
for misuse. 
We bring these two fields together to consider  
• Is there any conceptual risk from releasing AI model specifications from a controlled environment? 
• If so, is there any practical risk? 
• If so, are there effective controls to minimise that practical risk without excessive cost or damage to the 
data/models? 
We present case studies using specific intruder scenarios, develop response mechanisms, and suggest what 
lessons can be learned for the wider class of ML models. 
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Abstract 

Artificial Intelligence (AI) models are trained on large datasets. Where the training data is sensitive, the data 

holders need to consider risks posed by access to the training data and risks posed by the models that are 

released. 

The first problem can be considered solved: there are multiple tested solutions delivering secure access to 

sensitive data for research purposes. These include robust ‘statistical disclosure control’ (SDC) procedures for 

checking the confidentiality risk in outputs released from the secure environment. However, these SDC 

procedures are designed for statistical outputs. It is not clear how they relate to AI model specification created 

within the secure environment. 

Similarly, there is a small but growing literature on re-identification and other risks from AI models trained on 

personal data. However, this does not consider the operational circumstances which might limit opportunities 

for misuse. 

We bring these two fields together to consider  

• Is there any conceptual risk from releasing AI model specifications from a controlled environment? 

• If so, is there any practical risk? 

• If so, are there effective controls to minimise that practical risk without excessive cost or damage to the 

data/models? 

We show that there is certainly a theoretical risk, which also seems to have practical validity. There exist both 

statistical/technical controls to reduce risk, as well as operational controls which might be relevant for restricted 

environments. However, there remains a very large degree of uncertainty, including such fundamental questions 

as what exactly is ‘disclosive’ in ML models. 
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1 Introduction 

In recent years, the availability of large datasets, growing computer power and complex 

machine learning (ML) techniques has made the use of AI models for service delivery 

increasingly practical and efficient. These models often require large volumes of sensitive 

eHealth data to train them effectively. Correspondingly, this century has also seen an 

explosion in the availability and effectiveness of ‘trusted research environments’ (TREs) – 

facilities which allow researchers to work with very few restrictions on highly sensitive data, 

in an environment which ensures no ‘leakage’ of confidential data. 

One of the components of the TRE security model is checking that any outputs released from 

the TRE do not release confidential data. Output statistical disclosure control (SDC) 

techniques have been developed for these environments, but they are designed to deal with 

statistical output such as tabulations, coefficient estimates, or graphs. While there are some 

similarities between ML models and regression models, ML models present a number of new 

challenges: different representation of data, different attack scenarios, different reconstruction 

possibilities, a different scale of parameter extraction. 

ML researchers have already identified a number of attack scenarios allowing source data to 

be reconstructed, or other confidential information to be gleaned (such as whether an 

individual is in the source file). However, to date the operational context of the models has 

not been considered: given that the training data is held within a secure environment and only 

the model is released, can that model alone be a source of confidentiality breach? And if so, 

what are the range of statistical and non-statistical protection measures that could be 

employed to limit the risk? 

This paper considers this problem, using the example of image recognition modelling carried 

out in the Scottish National Safe Haven (SNSH). As the SNSH is typical of a modern 

research data centre (the most common form of accredited TRE) the results are easily 

generalizable. We have not covered the full range of ML models; instead we focus on 

illustrating how to approach the assessment of ML models. The choice of image processing is 

to demonstrate risks in relatable terms (recognizable objects rather than internal hard and soft 

tissue scans) and for which human inspections and control methods alone do not suffice (due 

to complexity of the models). We distinguish between theoretical and practical risks, and 

suggest statistical and non-statistical solutions to manage the identified risks. 

The next section describes the context for this paper in more detail. Section 3 reviews the 

literature on outputs SDC, TREs, and confidentiality risks in ML models. Section 4 outlines 

the methods to be used. Section 5 details specific attacks, and the factors which determine the 

likelihood of success. Section 6 considers how the TRE design affects these factors, and 

develops guidelines to limit risk exposure and formal measures to assess risk. Section 7 

concludes.  

2 Operational context 

Healthcare research has traditionally involved statistical analysis on structured eHealth data 

recorded in flat files. Recent advances in medical imaging and genomics make these data 

types now also available for research, driving the need for advanced tools and approaches 

(Nind et al. 2020). The discipline of Radiomics, for instance aims to enhance the existing data 

available to clinicians through advanced mathematical analysis of medical images, 

uncovering disease characteristics before they are visible to the naked eye (van Timmeren, J. 

et al. 2020). Machine learning and deep learning are two such advanced mathematical 

techniques used in the field of Artificial Intelligence (AI) for healthcare. 
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Complex AI models generally require large volumes of training data to ‘learn’ effectively; 

however, research cohorts are usually composed of relatively small, narrow subsets of people 

with specific conditions. Consented medical data are typically collected using specific 

acquisition protocols under ideal conditions thus generalising findings and repurposing data 

is problematic (Nind et al. 2020).  

In order for AI to benefit a whole population, not just narrow subsets, it needs to be trained 

on population-level data. This can be achieved through the use of routinely collected health 

data where consent for research purposes may not have been explicitly granted at the time of 

collection and is not feasible to acquire post collection.  

In Scotland, the use of unconsented data is allowed in healthcare research for public benefit; 

however a common law right to privacy does exist and must be protected through safeguards 

that prevent misuse and identification of individuals (Charter for Safe Havens in Scotland. 

2015). Machine learning and AI methods of research introduce new risks to individual 

privacy that we seek here to understand and mitigate. 

The Charter for Safe Havens in Scotland sets out the agreed principles and standards for 

handling unconsented health data to support research and statistics in the public benefit. Safe 

Havens are Trusted Research Environments (TRE) that enforce the “5 Safes” (Ritchie, 2017): 

1. safe projects – researchers must show their research delivers clear public benefits and 

that appropriate governance is in place such as ethics and data controller approvals 

2. safe people – researchers must have the technical skills to use the data, approved 

training in Information Governance, and agree to protect confidentiality of data at all 

times 

3. safe places – data is held in a secure environment, accessed under restricted 

conditions and analysed on controlled systems with built in security controls 

4. safe data – researchers are only given access to the minimum data required to answer 

their research question, stripped of personal identifiers 

5. safe outputs – research results extracted from the secure environment are checked and 

assessed to ensure they don’t contain potentially identifiable or disclosive 

information.
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TREs are mostly implemented as research data centres (RDCs). RDCs allow 

researchers full access to the data as if it was on their local machines, but in an 

environment that limits the ability of researchers to upload or download data or results 

without the approval of the RDC manager. A rarer type of TRE is the remote job 

server (RJS) which allows researchers to request statistical analysis, either from a 

menu or by sending in code, without generally being able to see the microdata. 

The ‘five safes’ framework (Ritchie, 2017), described above, illustrates the security 

controls available to TRE managers. Of particular relevance to TREs are “safe people” 

and “safe outputs”; the first addresses the likelihood of researchers breaching TRE 

rules deliberately or accidentally; the second describes the measures in place to check 

outputs. Green and Ritchie (2015) and Green et al (2020) show there are a wide 

variety of practices in TREs internationally: user training varies from non-existent to 

intensive face-to-face training; output checking also ranges from no checks (and 

assuming the researchers make no mistakes) to everything being checked by at least 

two pairs of eyes. Those who do not check outputs rely on training and/or written 

instructions on how to check outputs. 

The Scottish National Safe Haven (SNSH) is typical of modern TREs. It uses well-

established technical, procedural and statistical controls, allied to good-practice 

training models for researchers and TRE staff. As such, the discussion here is directly 

applicable to other TREs allowing machine learning models to be generated within 

their secure environment. 

3 Literature review 

3.1 Output SDC 

Output SDC is the checking of statistical outputs to ensure that they present no 

meaningful risk of disclosing confidential information used to generate them (in 

contrast, input SDC is concerned with reducing the detail of the source data). As the 

literature on output SDC has been dominated by the needs of statistical agencies, 

almost all of it focused on simple linear statistics, such as tabulations of frequencies, 

medians or means. However, Ritchie (2016) discusses a generalised approach to 

output SDC (see section 4 below). Ritchie (2016) then applies this to linear regression 

and frequency tables, showing that there is no practical disclosure risk in the former, 

and considerable risk in the latter.  

The ‘no practical risk’ arises even on the part of malicious action by the researcher for 

TREs, because a malicious researcher can observe information directly on a data 

point; there is therefore no incentive to fake regressions. In theory this provides a 

useful example: both linear regression and ML models generate representations of the 

key features of the data, not exact reproduction. However, there are two significant 

differences. First, regression models generate few parameters relative to the number of 

observations, and often estimate ‘incidental’ parameters which are not published. 

Second, regression source data is likely to contain single values of interest to 
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malicious researchers, and so remembering them is feasible. In contrast, the data input 

to an ML model, such as a facial image, is only of value in its entirety; humans 

memorising data points is not feasible, and so there is more incentive to falsify models 

to enable the extraction of an entire image or other input. 

There is no clear agreement in the literature on what constitutes ‘acceptable’ risk in 

outputs. Traditional generalist SDC texts such as Hundepool et al (2010) are content to 

explain the theoretical basis of SDC, but provide little indication of how an acceptable 

level of risk may be chosen in practice; they also tend to assume that such evaluations 

are objective. In contrast, manuals for output checkers such as Brandt et al (2010) or 

SDAP (2019) do discuss the need to evaluate outputs in context, and are more explicit 

about the subjectivity of decision-making. Hafner et al (2015) point out, that once 

subjectivity is acknowledged, the position of the organisation as ‘default-open’ 

(release unless problem identified) or ‘default-closed’ (do not release unless no 

problems identified) has a major effect on release decisions. 

3.2 Machine Learning Models 

With the growing availability and complexity of data in various domains, there is an 

increasing use of machine learning for analysis inside TREs and a growing demand for 

release of trained models from those environments due to generalisation of ML 

application and opportunity for clinical impact in practice. Release requests for 

machine learning applications consist mainly of ‘learnt models’ comprising a model’s 

architecture and learned weights. Learnt models also include various hyperparameters, 

enabling correct inference on unseen data.  

There are multiple types of machine learning algorithms (Aiswariya et al. 2020). The 

most popular types are cited as follows: 

• Classical machine learning: Classical models are the most popular machine 

learning models. They include models such as linear regression, logistic 

regression, Support Vector Machines, decision trees or k-means clustering.  

• Ensemble Models: Ensemble models consist of aggregating multiple learning 

models; they generally achieve a better performance than individual and 

traditional machine learning models. Gradient boosting and random forest are 

examples of ensemble models.   

• Neural networks: neural networks are designed for more complex tasks 

especially for unstructured data such as images, videos or audio. There are 

different types of models such as Convolutional Neural Networks (CNNs), 

Long Short-Term Memory (LSTM) networks, Recurrent neural networks 

(RNNs) or autoencoders, which are used to encode input data in an 

unsupervised manner. 

‘Classical’ algorithms, and (relatively) simpler Multi-Layer Perceptron’s rely on input 

data being first processed or ‘encoded’ so that each example is described by defined 

values for a fixed number of features. In contrast, so-called “Deep Learning” 
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approaches typically use many-layered architectures and take as inputs ‘raw’ data 

(images, audio, etc), where the first few layers automate the process of feature 

creation. While more powerful, not surprisingly there is a trade-off here: the early 

layers are all defined by (large numbers of) parameters, and there is a consequent risk 

that these effectively ‘remember’ the training data, rather than generalising from it. 

Also, the autoencoding process can make the model very difficult if not impossible for 

humans to interpret or explain. 

ML models are trained in various ways including supervised, semi-supervised, 

unsupervised, or reinforcement learning. Supervised learning relies on the algorithm 

having labelled data to learn patterns from, whereas unsupervised learning relies on 

the algorithm identifying discriminative features in the data without prior knowledge 

of labels. 

3.3 Risks of disclosure through ML models 

Machine learning models are prone to various attacks. There exist two main threats on 

machine learning, the first during training and the second during production and 

deployment (He et al 2020). Attacks such as data poisoning, and evasion happen at the 

training level and are not meaningful within TREs. On the other hand, attacks at a 

production and deployment level can occur after models are released from those 

environments.  

In this section we describe what we identified as the most significant risks on machine 

learning models affecting their release from TREs. 

3.3.1 Model inversion attacks 

Model inversion attacks are the most common attack on machine learning. Various 

types of inversion attack have been published in the literature, such as (Fredrikson et 

al, 2019). 

Model inversion attacks are also referred to as reconstruction attacks, aimed at 

reconstructing part or full training datasets, data labels or both. These attacks can be 

particularly dangerous for private and confidential data such as medical or facial 

recognition applications (Kaissis et al. 2020). However, the most popular ones use 

existing knowledge of the models such as some known features, labels or weights and 

aim to recover sensitive features or some of the training data itself. 

3.3.2 Membership inference attacks 

Membership inference attacks aim at determining whether a sample data point was 

used for training a machine learning model. These kinds of attacks are usually applied 

in a black-box fashion where there is no prior knowledge of model architecture, 

parameters, or weights (Chakraborty et al. 2018). 

The following section describes case studies and examples of model inversion and 

membership inference attacks demonstrated with a worst case scenario in the models’ 

design. 
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4 Methods 

In this paper we follow the approach outlined in Ritchie (2016) for assessing the risk 

in particular types of output. This consists of 

1. Identifying the statistical form of the output 

2. Identifying theoretical risks: 

a. inherent in the output, such as unique observations 

b. by comparing the output with similar outputs that, for example, differ 

by a single observation or parameter/variable 

3. Identifying the necessary conditions for the risk to manifest itself 

4. Reviewing the likelihood of those conditions occurring in practice 

5. Identifying remedial action to reduce disclosure risk 

To identify theoretical risk we use an ‘ultra-intruder’ model: that is, we assume that 

the intruder has access to almost unlimited external knowledge, and has no objective 

other than to uncover confidential information. We also focus on the worst cases 

within each group of results; that is, if a more complex ML procedure makes it harder 

to uncover confidential data, we ignore it. For ML modelling, we assume that the 

output takes the form of all the model parameters and any auxiliary information that is 

produced as part of the model. 

The intruder model has been criticised for its use in decision-making (eg Hafner et al, 

2015) but it is useful for defining an overall worst-case theoretical position. However, 

for practical guidance we need to identify what are the genuine risks in realistic (even 

if unlikely) scenarios. Identifying necessary and/or sufficient conditions for 

confidentiality breaches to occur allows their likelihood to be assessed in the context 

of a particular access regime – such as a TRE. 

As noted above, there are also metrics which can quantify the risk. These can be used 

to provide quantitative support for what seems ‘likely’, as well as providing a handy 

metric to be applied to outputs. 

Finally, confidentiality breaches can arise from both insider risk (an authorised user 

deliberately creating misleading outputs to fool output checking) and outsider risk (an 

external individual with access to the released output and knowledge of the technique 

used to create it, who then tries to uncover the source data). As noted above, while 

insider risk is not an issue for regression modelling (except in RJSs), for ML models 

there is at least a theoretical incentive for insider risk. The distinction is important, as 

different remedies may be appropriate to insider and outsider risk. 

As this is the first paper to consider disclosure risk in ML models, we do not try to 

cover the full range of ML models. Instead we focus on an AlexNet model to illustrate 

how we can approach the assessment of ML models. Nor do we pursue 2(b), above. 

Note that the measure of ‘disclosure risk’ is still undetermined. In traditional SDC 

modelling, risk is measured as the probability of extracting an exact value (or within a 

given tolerance for dominance checks). In the data sources used for AI, a large degree 

of ‘fuzziness’ may still not protect against a disclosure risk – a picture may be easily 
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recognisable, even if blurred. We are exploring this, but for now we use subjective 

measures of  ‘close enough’. 

5 Risk assessment 

In this section we describe two case studies with experiments and analysis of the two 

identified risks for machine learning models. 

5.1 Case 1: model inversion attack 

In model inversion attacks, the attacker has prior knowledge of the model and its 

parameters. In the first case we experimented with an attack model based on the work 

of Fredrikson et al (2019). The attack model aims at optimizing the image to minimize 

the loss given a set of fixed weights, instead of optimizing the weights to minimize the 

loss as occurs during conventional model training. In other words, it reverse-engineers 

the model process. In conventional SDC terms, this is the equivalent of trying to 

reconstruct an observation from the estimated coefficients. 

The attack model exploits the vulnerability of the target model as follows:  

• The attack model has access to the model architecture, parameters and target 

labels. 

• For each class label of the target model, the adversary first creates a noise 

image, feeds this sample to the model, and computes the posteriors. 

• The attack model uses backpropagation over the target model’s parameters to 

optimize the input sample so that the corresponding posterior of the class can 

exceed a pre-set threshold.  

• Once the threshold is reached, the optimized sample is the representative 

sample of that class, i.e., the attack output.  

5.1.1 Target model architecture 

AlexNet is chosen as a target model (Krizhevsky et al. 2017), which consists of eight 

layers with five convolution layers and three fully connected layers. The model is 

modified and trained without dropout or regularisation layer in order to simulate an 

overfitting model, which is more prone to attacks.  

The model is trained on the CIFAR10 dataset where the training set consist of 60,000 

images and the test set consists of 10,000 images. The model is trained to classify 10 

class labels of different objects. Figure 2 shows samples of images from the training 

set. The model is trained in 25 epochs. 



 

 

 

 

9 

 
Figure 1 - sample from CIFAR10 

5.1.2 Results 

The target model overall accuracy on test data is 62% overall with individual 

accuracies by class label ranging from a minimum of 43% to a maximum of 81%.  

The model inversion attack is applied on a random test sample of 100 images. The 

attack model exploits the knowledge of the model and label class. New re-constructed 

images are created, then tested on the target model to assess the accuracy of the 

reconstruction.  16% are accurately reconstructed. Figure 3 shows samples of the 

inversion attack results. 

We have also modified the model and added training with Differential Privacy (DP) 

using the Opacus library.  DP addresses privacy risk by incorporating random noise at 

the training level. We have used DP-SGD (Differentially-Private Stochastic Gradient 

Descent) which is a modification of the stochastic gradient descent algorithm (Van der 

Maater et al. 2020). The model is trained in PyTorch through access to its parameter 

gradients, i.e., the gradients of the loss with respect to each parameter of the model. 

This access preserves differential privacy of the training data, hence the resulting 

model is more secure.  

The inversion attack is applied to 100 random samples, and the test results in 9% of 

images accurately reconstructed.  Training the model using DP has reduced the risk in 

the model inversion attacks. There is a known privacy-utility trade off with DP and 

model performance is scarified. 

More experiments need to be applied for fine tuning parameters to obtain optimum 

results. The main aim of the experiments presented in this section is a demonstration 

of the most common risks of disclosure of machine learning models. 
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Original image Reconstructed image 

 

Figure 2 – samples of reconstructed images using model inversion attack 

5.2 Case 2: membership inference attack 

This second case study describes an example of the second risk of disclosure through 

machine learning models; that is membership inference attack in a black box fashion. 

Here, the attack model aims at determining whether a given sample belongs to a 

training set with black-box access to the model and no prior knowledge of parameters 

or architecture.  Machine learning models are designed for the objective of being able 

to generalise on unseen data, however the learning process means they tend to perform 

better on the data they are trained on. The confidence scores on the training samples 

are always higher than any other input.  A Membership inference attack takes 

advantage of this characteristic to compute the likelihood of membership of a sample 

and therefore recover some or all of the training sets (He et al 2021). There are other 

ways of performing membership inference attacks such as using the output of 

intermediate layers or distance to the decision boundary. 

Although these kinds of attacks are possible, they are usually very difficult to apply 

(depending on the type of machine learning model) due to the complexity of the 

feature space in some tasks such as image recognition for example. Membership 

inference attacks are mainly associated with model overfitting (He et al 2021). 

Overfitting results usually from poor model architecture, training method or the 

training dataset. 
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5.2.1 Experiment 

In this experiment we use a confidence level attack as it is one of the simplest and 

most common membership inference attacks (Shokri et al. 2017).  Here the attack 

exploits the confidence level to determine if a sample is a member of the training set.  

We have used the same target model implemented during the model inversion attack 

based on Alexnet architecture on CIFAR10 dataset.  

The attack model is based on the model presented in (Shokri et al. 2017) with the 

implementation based on (Bogdan et al . 2018). First the target model is trained on the 

CIFAR10 dataset. The second step is to train a number of shadow models that will be 

used for the attack.  The attack sends a query to the target attack and obtains a vector 

probability of 10 values, obtaining a probability for each class. The probability vector 

is passed to the attack model in addition to the label class. The attacker then infers 

whether the data point is a member of the training set or not.  

5.2.2 Results  

The overall accuracy of the target model is 62%. The attack overall accuracy is 

56.13% where more than half of the attack attempts were successful in using the 

confidence probabilities in inferring if a data point belongs to the training set used to 

train the target model. 

6 Responses and metrics 

The previous section described some of the most common risks in disclosing machine 

learning models. We have presented some typical cases studies on neural networks 

and in particular deep neural networks, where architectures are more complex than 

other classical machine learning models, and where applying human inspections and 

disclosure control methods is impossible. In this section we introduce the use of 

automatic risk assessment methods to help in the disclosure of such models. 

6.1 Formal risk measure 

Addressing disclosure control for machine learning models is a challenging task due to 

the ambiguity, multiple parameters and privacy risks from different attacks as 

described in the previous section. Quantifying risks from machine learning models is 

impossible using human controls only.  Providing TREs and researchers with metrics 

tools that helps assess the risk factors for models can help quantify and manage risks 

in disclosure control of such models.  

Various machine learning attacks metrics tools have been proposed in the literature 

such as (Liu et al. 2021), (Murakonda et al. 2020) and (ART toolbox). The main aim 

of these tools is to provide risk metrics and assess machine learning models robustness 

against various attacks.  (Schwerdtner et al. 2020) have also proposed a framework by 

applying the definition of risk from the statistical risk theory to machine learning 

models. The framework is used for risk assessment of deployed models.  
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In this section, we describe experimentation using one of the assessment tools for risk 

scoring machine learning models.  

We have assessed the usability of ML_Privacy_Meter (Murakonda et al. 2020) and 

how it can be applied for disclosure control on ML models. 

6.1.1 ML_Privacy_tool 

The ML_Privacy_tool is a tool to assess robustness of machine learning models by 

applying various types of attacks such as model inversion attacks or membership 

attacks and provide metrics for quantifying individual risks in models. The 

quantification of risks is useful during model development or at the disclosure control 

point in order to assess and quantify data protection and privacy impacts. The tool 

helps identify potential privacy risks and appropriate risk mitigation measures.   

Functionality of the tool can be summarised as follows  

• ML_Privacy_Meter analyses the vulnerability of a machine learning model to 

membership inference attacks. 

• The tool generates attacks on a trained target model assuming black box or 

white box access to the model. 

• White box attacks can exploit the target model parameter’s gradients, 

intermediate layer outputs or prediction of the model to infer training set 

membership of the input.  

• Black box attacks only use the target model predictions to identify 

membership. The attack is performed by generating an inference model using 

the target model components which can be exploited for some data and returns 

the probability of membership of the training set for that data. 

6.1.2 Case study 

In this section we describe the use of ML_privacy-tool for the assessment of a 

machine learning model.  

We use Alexnet model trained in CIFAR10 dataset as a target model. The attack is 

defined either as a white box (access to the model architecture, parameters) or a black 

box (access to results only).  

Using the tool we define an attack object as describe in Figure 4.  The attack model 

takes the target model, the training data, the network layers where to apply attacks on, 

and the number of epochs the attack model is trained. Using the attack initialization, 

we define the type of attack as well. 



 

 

 

 

13 

 
Figure 3 - white box attack parameters 

 

6.1.3 Results 

The overall target model’s accuracy is 43.84% and 46.42% on the test data. We test 

two attack models, the black box model accuracy is 74.78% and the white box attack 

is 74.42%. The attack models’ accuracy provides a useful metric on the robustness of 

the target models. The tool also provides the following metrics: 

6.1.3.1 Histogram of the membership probabilities for training set member data 

and non-member data from the population.  

A higher membership probability shows that the model has predicted a higher 

probability that the data is part of the training data. Figure 5 shows results of the 

privacy risk probability for both white box and black box attacks. The attack identified 

around 15% of the training data with a probability or 1 for the black box attack. 

Whereas it identified 18% of the data as being member of the training set with a 

probability of 0.8 for the white box attack.  

 

attackobj = ml_privacy_meter.attacks.meminf.initialize( 
                 target_train_model=cmodel,  
                 target_attack_model=cmodel,  
                 train_datahandler=datahandler,  
                 attack_datahandler=datahandler,  
                 optimizer="adam",  
                 layers_to_exploit = [3,4,5], 
                 gradients_to_exploit = [5], 
                 exploit_loss=True, 
                 exploit_label=True,                  
                 learning_rate=0.0001,  
                 epochs=100, mode_name=’whitebox’) 
 
# Begins training the attack model.  
attackobj.train_attack()              
 
# The attack accuracy for the attack model is evaluated during 
training itself on a  
# validation/ test set that is reported on the best performing attack 
model  
# (out of all the epochs). 
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6.1.3.2 Receiver Operating Characteristic (ROC) curve for the membership 

inference attack.  

An attack is successful if it can achieve larger values of True Positive rate and small 

values of False Positive rate. Success of the attacker can be quantified by an ROC 

curve representing the trade-off between False Positive Rate and True Positive Rate of 

the attacker. True positive represents correctly identifying a member as present in the 

data and False positive refers to identifying a non-member as member. An attack is 

successful if it can achieve larger values of True Positive rate at small values of False 

Positive rate. Figure 6 shows the ROC curves for both types of attacks. The area under 

those curves quantifies the aggregate privacy risk to the data posed by the model. The 

black box attack area is larger than the white box attack. For this sample target model, 

the risk of a black box attack is higher than a white box attack. 

 

Privacy risk for a Blackbox attack 
 

Privacy risk for a Whitebox attack  

Figure 4 - Privacy risk histogram for Blackbox and Whitebox attacks on AlexNet 

network 
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ROC for BlackBox attack 

 

ROC for Whitebox attack 

 

Figure 5 - Receiver Operating Characteristic (ROC) curve for black box and white box 

attacks 

6.1.4 Discussion 

This section describes a use case for the ML-Privacy-model. Running the attack metric 

on a sample target model provides us with an example of the benefits of such tools for 

assessing risks of disclosure through machine learning models. The tool provides clear 

metrics and risk probability for each attack and provides useful information about the 

data privacy risks. In addition to providing clear statistical measure for a model’s 

robustness, the tool can be also used by model owners to adjust different parameters 

such as differential privacy parameters to reach optimum results. In the context of 

TREs, the tool can be used by controllers to assess risk measures for disclosure control 

applications. 

7 Recommendations 

Unlike conventional SDC process, applying disclosure control on machine learning 

models is a challenging task and cannot be performed using the existing methods.  

Machine learning models and architectures are very complex and hard to apply human 

controls only.  

In this section we propose some provisional recommendations and solutions that can 

constitute a path to SDC disclosure control for machine learning models. We have 

identified two types of solutions, the first one is data centric, where more controls are 

applied on the data released to users. The second one is user and model centric, where 

control and guidelines are applied on users and the machine learning models.  
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7.1 Data centric solutions 

• Watermarking data released to users in order to facilitate leak source tracking 

and identification when models are released.  

• Keeping a held-out dataset to test difference in distribution of predicted 

probabilities for membership inference (eg 10% of rows are not provided to the 

researcher but are used by disclosure controllers for a final independent 

evaluation). 

• Developing blunt matching tools that look for straight data ‘copies’ contained 

in the model outputs either deliberately or accidentally. 

7.2 Model/User centric solutions 

• Introduce best practice guideline for the use of data and design architecture of 

machine learning models. This will help users to design robust and safe 

algorithms. For neural network models this can include: regularisation, 

dropout, deferential privacy, model ensemble learning or adding noise to 

confidence score vectors to avoid membership inference attacks (Yang et al. 

2020). Other principles and guidelines can be adopted such as the ones 

introduced by the Committee of Standards in Public Life.  

• Introduce automated metric tools for both TRE controllers and users, such as 

the tools described in section (Response). These kinds of tools can be designed 

and customized within TRE environments.  They can enable quantification of 

different risks and vulnerabilities of machine learning models. They can also 

help users to assess their models internally and build more robust ones. The 

previous section shows some results in using such tools to predict and assess 

the risks of attacks in machine learning.  

• Introduce the notion of data privacy and security by design. This can be 

applied with the introduction of explainable AI (Arrieta et al. 2020). 

Explainable AI are a set of frameworks and machine learning suites that enable 

machine learning models to be explainable, interpretable by humans, hence 

auditable.  Explainable AI aims at creating safe and private model security by 

design. Users of TREs can adopt some features of explainable AI such as the 

following:  

o Rationale: expansibility and description of the process that led to 

decision made by ML models.   

o Data: Giving clear description of what data have been used in training 

ML models. This helps the traceability of the data provided to TRE 

users.  

o Responsibility: Define clear responsibility roles on the models’ owners.  
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o Safety: describing the steps in the design to make models safe and 

privacy preserving. 

8 Conclusion 

This paper is a first attempt to structure the ML-SDC problem. We have concentrated 

on a simple, common case to illustrate some potential issues, and outlined a method of 

addressing the problem that other researchers may find useful. 

In this paper we have presented two case studies representing the most commonly 

identified risks for machine learning models, focusing on neural networks. The first 

experiment described a white box attack, where an attacker has access to the model 

characteristics, architectures, weights and class labels. The second attack describes a 

black box attack where the attacker has no access to the model’s architectures but 

infers the membership through confidence scores.  

The attacks are applied on a common state-of-the-art network architecture of 

convolutional neural networks, AlexNet. Results show that, although the attack is not 

100% accurate, there are still risks of some data being recovered. Risks can be reduced 

by adopting several good practice guidelines in a robust design of the models. 

This is a very early analysis of a large problem with many dimensions and many 

unknowns. Some do have analogies in traditional SDC: does ‘differencing risk’ still 

exist when models are, by construction, non-linear representations of the data? But 

other unknowns are very fundamental: what counts as disclosure risk when the source 

data is an object, rather than the single data point being targeted in traditional SDC 

models?  

We have also not considered control measures beyond metrics for risk and the 

encouragement of ethical practices. User controls are an important consideration for 

TREs; and statistical controls such as requiring a subset of parameters to be withheld 

could prove an effective, simple way to manage releases.  

This is the first output in a new programme of research being conducted by the authors 

and others. We welcome contributions from other researchers at the above address. 

 

 

9 References 

Arrieta, A.B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., 

García, S., Gil-López, S., Molina, D., Benjamins, R. and Chatila, R., 2020. 

Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities 

and challenges toward responsible AI. Information Fusion, 58, pp.82-115. 

ART toolbox https://github.com/Trusted-AI/adversarial-robustness-toolbox 

Artificial Intelligence and Public Standards A Review by the Committee on Standards 

in Public Life, 2020, 

https://github.com/Trusted-AI/adversarial-robustness-toolbox


 

 

 

 

18 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/att

achment_data/file/868284/Web_Version_AI_and_Public_Standards.PDF 

Aiswariya Milan, K. and Kumar, N.P., 2020. Machine Learning Techniques in 

Healthcare—A Survey. Journal of Computational and Theoretical 

Nanoscience, 17(9-10), pp.4276-4279. 

Bogdan Kulynych and Mohammad Yaghini. mia: A library for running membership 

inference attacks against ML models. 2018. 

Brandt M., Franconi L., Guerke C., Hundepool A., Lucarelli M., Mol J., Ritchie F., 

Seri G. and Welpton R. (2010), Guidelines for the checking of output based on 

microdata research, Final Report of ESSnet Sub-group on Output 

SDC  http://neon.vb.cbs.nl/casc/ESSnet/guidelines_on_outputchecking.pdf  

Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A. and Mukhopadhyay, D., 

2018. Adversarial attacks and defences: A survey. arXiv preprint 

arXiv:1810.00069. 

Green, E., and Ritchie, F. (2016) Data Access Project: Final Report. Australian 

Department of Social Services. June. http://eprints.uwe.ac.uk/31874/  

Hafner H-P., Lenz R., Ritchie F., and Welpton R. (2015) Evidence-based, context-

sensitive, user-centred, risk-managed SDC planning: designing data access 

solutions for scientific use. In: Worksession on Statistical Data Confidentiality 

2015, Eurostat 

He, Y., Meng, G., Chen, K., Hu, X. and He, J., 2020. Towards Security Threats of 

Deep Learning Systems: A Survey. IEEE Transactions on Software 

Engineering. 

He, X., Wen, R., Wu, Y., Backes, M., Shen, Y. and Zhang, Y., 2021. Node-Level 

Membership Inference Attacks Against Graph Neural Networks. arXiv 

preprint arXiv:2102.05429. 

Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Lenz, R., Longhurst, J., 

Schulte Nord-holt, E., Seri, G. and De Wolf, P-P. (2010). Handbook on 

Statistical Disclosure Control. ESSNet SDC. 

http://neon.vb.cbs.nl/casc/.\SDC_Handbook.pdf     

Kaissis, G.A., Makowski, M.R., Rückert, D. and Braren, R.F., 2020. Secure, privacy-

preserving and federated machine learning in medical imaging. Nature 

Machine Intelligence, 2(6), pp.305-311. 

Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2017. ImageNet classification with 

deep convolutional neural networks. Communications of the ACM, 60(6), 

pp.84-90. 

Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical 

imaging and personalized medicine. Nature Reviews Clinical Oncology. 

2017;14:749. 

Liu, Y., Wen, R., He, X., Salem, A., Zhang, Z., Backes, M., De Cristofaro, E., Fritz, 

M. and Zhang, Y., 2021. ML-Doctor: Holistic Risk Assessment of Inference 

Attacks Against Machine Learning Models. arXiv preprint arXiv:2102.02551. 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/868284/Web_Version_AI_and_Public_Standards.PDF
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/868284/Web_Version_AI_and_Public_Standards.PDF
http://neon.vb.cbs.nl/casc/ESSnet/guidelines_on_outputchecking.pdf
http://eprints.uwe.ac.uk/31874/
http://neon.vb.cbs.nl/casc/SDC_Handbook.pdf


 

 

 

 

19 

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Mode Inversion Attacks that 

Exploit Confidence Information and Basic Countermeasures. In ACM SIGSAC 

Conference on Computer and Communications Security(CCS),pages1322–

1333.ACM,2015. 1,3,4,5,7, 12 

Murakonda, S.K. and Shokri, R., 2020. Ml privacy meter: Aiding regulatory 

compliance by quantifying the privacy risks of machine learning. arXiv 

preprint arXiv:2007.09339. 

Nind T, Sutherland J, McAllister G, et al. An extensible big data software architecture 

managing a research resource of real-world clinical radiology data linked to 

other health data from the whole Scottish population, GigaScience, Volume 9, 

Issue 10, October 2020. 

Opacus, https://github.com/pytorch/opacus 

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership 

inference attacks against machine learning models. In 2017 IEEE Symposium 

on Security and Privacy (SP), pages 3–18. IEEE, 2017. 

Ritchie F. (2017) "The ‘Five Safes’: a framework for planning, designing and 

evaluating data access solutions". Data For Policy Conference 2017. 

September. https://zenodo.org/record/897821#.WceTWMZryUk 

Ritchie F. and Green E. (2020) "Frameworks, principles and accreditation in modern 

data management ", Working papers in Economics no 202002. https://uwe-

repository.worktribe.com/output/6790882 

Rigaki M, Garcia S. A survey of privacy attacks in machine learning. arXiv preprint 

arXiv:2007.07646. 2020 Jul 15. 

Schwerdtner, Paul & Greßner, Florens & Kapoor, Nikhil & Assion, Felix & Sass, 

René & Günther, Wiebke & Hüger, Fabian & Schlicht, Peter. (2020). Risk 

Assessment for Machine Learning Models. 

SDAP (2019) Statistical Disclosure Control Handbook v1.0. Secure Data Access 

Professionals. August. https://securedatagroup.org/sdc-handbook/ 

The Scottish Government. Charter for Safe Havens in Scotland: Handling 

Unconsented Data from National Health Service Patient Records to Support 

Research and Statistics. 2015 https://www.gov.scot/publications/charter-safe-

havens-scotland-handling-unconsented-data-national-health-service-patient-

records-support-research-statistics/  

van der Maaten, L. and Hannun, A., 2020. The Trade-Offs of Private Prediction. arXiv 

preprint arXiv:2007.05089. 

van Timmeren, J., Cester, D., Tanadini-Lang, S. et al. Radiomics in medical 

imaging—“how-to” guide and critical reflection. Insights Imaging 11, 91 

(2020). 

Yang Z, Shao B, Xuan B, Chang EC, Zhang F. Defending model inversion and 

membership inference attacks via prediction purification. arXiv preprint 

arXiv:2005.03915. 2020 May 8. 

https://github.com/pytorch/opacus
https://zenodo.org/record/897821#.WceTWMZryUk
https://uwe-repository.worktribe.com/output/6790882
https://uwe-repository.worktribe.com/output/6790882
https://securedatagroup.org/sdc-handbook/
https://www.gov.scot/publications/charter-safe-havens-scotland-handling-unconsented-data-national-health-service-patient-records-support-research-statistics/
https://www.gov.scot/publications/charter-safe-havens-scotland-handling-unconsented-data-national-health-service-patient-records-support-research-statistics/
https://www.gov.scot/publications/charter-safe-havens-scotland-handling-unconsented-data-national-health-service-patient-records-support-research-statistics/

	SDC2021_Day1_Ritchie_A.pdf
	Abstract

	SDC for ML - paper outline_UNECE format v2.pdf

