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Abstract

There is a growing interest to access microdata collected by national statistical institutes or other data
controllers. If microdata are personally identifiable information, a possible way for data controllers to share
them in a way compliant with the privacy legislation and the statistical legislation is to release anonymized
microdata. Yet, data analysts often need access to the original microdata in order to avoid the information loss
caused by anonymization. To answer that need, safe access centers (on physical premises or on-line) have been
set up by several national statistical institutes. In these centers, users can run their analyses on original data
using the center’s software, and the center checks the outputs of the users’ analyses before returning those
outputs to them, in order to make sure users do not take home any result that might leak the confidential
microdata on which it has been computed. Output checking is currently implemented with human checkers,
which is expensive and slow, especially because checkers need to have specific statistical expertise. In this
work, we explore the use of machine learning to partially automate output checking. We follow the rule-based
approach and our empirical results show that our system can generalize the rules it is trained on. In conclusion,
output checking assisted by machine learning offers encouraging results that call for trialing it in safe access
centers.
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Abstract. There is an increasing demand by researchers to access the microdata
(data on individual persons or enterprises) collected by national statistical insti-
tutes or other data controllers. If microdata are personally identifiable information,
the most usual way for data controllers to share them in a way compliant with the
privacy legislation (notably the EU General Data Protection Regulation) is to re-
lease anonymized microdata. Yet, data analysts often need access to the original
microdata in order to avoid the information loss caused by anonymization. To
answer that need, safe access centers (on physical premises or on-line) have been
set up by several national statistical institutes. In these centers, users can run
their analyses on original data using the controller’s software, and the controller
checks the outputs of the users’ analyses before returning those outputs to them,
in order to make sure users do not take home any result that might leak the con-
fidential microdata on which it has been computed. Output checking is currently
implemented with human checkers, which is expensive and slow, especially because
checkers need to have specific statistical expertise. In this work, we explore the use
of machine learning to partially automate output checking.

1 Introduction

Researchers want data that are as accurate as possible to reach meaningful
and trustworthy conclusions. Microdata, that is, data at the level of indi-
vidual persons or enterprises, are in increasing demand. Privacy legislation,
epitomized by the European Union’s General Data Protection Regulation [4],
prevents data controllers from sharing for secondary use microdata that con-
tain personally identifiable information (PII). The most usual solution is for



the controller to anonymize microdata before releasing them for secondary
use [6, 3]. Yet, anonymization entails information loss and hence the anal-
yses on anonymized data may not be entirely trustworthy. For this reason,
researchers often require access to the original microdata.

Some data controllers, such as those involved in the nascent decentralized
data marketplaces, such as Ocean [7], intend to sell not only anonymized data
(data-as-a-service) but also the possibility of running computations on the
original data (compute-to-data). Yet, they offer no solution to avert possible
data leakages associated with the results of computations.

Other data controllers, especially national statistical institutes and data
archives, have set up safe access centers as an alternative for those situa-
tions in which researchers cannot use anonymized data. A safe access center
may be a physical facility to which the researcher must travel or an on-line
service that the researcher can remotely access. Whatever the case, it is a
controlled environment in which the researcher runs her analyses using soft-
ware provided by the controller and is under monitoring by the controller’s
staff during her entire work session.

A salient feature of safe access centers is that any output of the re-
searcher’s analysis is checked by the data controller’s staff before returning it
to the researcher [1, 5]. The purpose of output checking is to make sure that
the researcher will not take home any result that might leak the confidential
microdata on which it has been computed.

Highly expert output checkers can follow the so-called principles-based
model [1, 5]. In this model, no output is ruled in or out in advance. Rather,
checkers collaborate with researchers and take the entire context of the anal-
ysis into account to make a decision on whether an output is safe enough
to be returned or not. Although this model is quite costly, it minimizes the
probabilities of false positives (labeling an output as safe when in fact it leaks
sensitive information) and false negatives (labeling as unsafe an output that
actually leaks no confidential information).

An easier alternative that requires less interaction and expertise on the
checker’s side is the rule-based model. In this case, the checker uses simple
rules of thumb to label an output as safe or unsafe. The price paid is a higher
probability of false positives and false negatives.

Contribution and plan of this paper

Output checking currently relies on human checkers. Even if they guide
themselves by rules rather than principles, checking is time-consuming and
hence expensive and slow. Besides, it is not easy for data controllers to ap-
point dedicated output checkers: staff with the required statistical expertise



are difficult to recruit and output checking is often not regarded as a core
task.

We propose to relieve some of the burden of output checking by (partially)
automating it via a machine learning approach. This can be useful to all
kinds of controllers, from national statistical institutes to decentralized data
marketplaces.

The principles-based model is definitely very difficult to automate, be-
cause it requires contextual input to be obtained from the interaction be-
tween checkers and researchers. In contrast, the rule-based approach is more
amenable to automation, as rules can easily be learned using machine learn-
ing.

Taking as a starting point the rules set forth in [1], we create synthetic
output checking log files based on different subsets of rules. Then we train
deep learning models on each synthetic log file, and we examine how well the
rules used to generate the log file have been learned and, more importantly,
how the rules not used to generate the log file have also been learned. Our
results show that our deep learning approach can generalize the rules embed-
ded in the training data, and hence captures the general flavor of safe and
unsafe outputs. Admittedly, our system does not completely eliminate the
need for human checking, but it can be used to reduce the human workload
to filtering out any false positives, that is, outputs labeled as safe by our
system which turn out to be unsafe under a more sophisticated checking.

The rest of this paper is organized as follows. Section 2 rewrites the
checking rules proposed in [1] in view of using them to create synthetic output
checking logs. Section 3 reports experimental work and assesses how the deep
learning models learned can generalize the rules embedded in the training
data. Conclusions and future work suggestions are summarized in Section 4.

2 Rewriting checking rules for synthetic log gen-
eration

In [1, 5], rules of thumb are proposed to decide whether an output can be
safely returned to the researcher. Both documents propose similar rules based
on similar rationales.

For the sake of concreteness, we take the rules proposed in [1] and we
rewrite them in terms of the following attributes: AnalysisType, Output,
Confidential, Context and Decision. In this way, we get:

RULE 1.
Analysis Type: FrequencyTable



Output: Number of units in each cell.

Confidential: YES/NO (YES means the data on which the frequency
table is computed are confidential).

Decision: YES/NO

The decision is NO, that is, the output is not returned if data are
confidential AND {some cell contains less than 10 units OR a single
cell contains more than 90% of the total number of units in a row or
column}.

RULE 2.
Analysis Type: MagnitudeTable
Output: Magnitudes in each cell (average or total).
Confidential: YES/NO

Context: Number of units in each cell, and percentage of cell total
represented by the maximum contribution to the cell.

Decision: YES/NO

The decision is NO if data are confidential AND {some cell contains
less than 10 units OR a single cell contains more than 90% of the units
in a row or column OR in some cell the largest contributor contributes
more than 50% of cell total}.

RULES 3a/3b/3c.
Analysis Type: Maximum/Minimum/Percentile
Output: Value of Maximum/Minimum/Percentile.
Confidential: YES/NO
Decision: YES/NO

The decision is NO if data are confidential.

RULE 4.
Analysis Type: Mode
Output: Modal value
Confidential: YES/NO
Context: Sample size.
Decision: YES/NO

The decision is NO if {data are confidential AND the frequency of the
modal value is more than 90% of the sample size}.
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RULES 5a/5b/5c/5d.
AnalysisType: Mean/Index/Ratio/Indicator
Output: Value of the statistic.
Confidential: YES/NO

Context: Sample size, percentage of sample total represented by the
largest value in the sample.

Decision: YES/NO

The decision is NO if {data are confidential AND {sample size < 10

OR a single contribution accounts for more than 50% of the sample
total}}.

RULE 6.
Analysis Type: ConcentrationRatio
Output: Value of the ratio.
Confidential: YES/NO

Context: Sample size, percentage of sample total represented by the
largest value in the sample.

Decision: YES/NO
The decision NO if {data are confidential AND {sample size < 10 OR a
single contribution accounts for more than 90% of the sample total}}.
RULES 7a/7b/7c.
Analysis Type: Variance/Skewness/Kurtosis
Output: Value of the statistic.
Confidential: YES/NO
Context: Sample size.
Decision: YES/NO
The decision is NO if {data are confidential AND sample size < 10}.
RULE 8.
AnalysisType: Graph
Output: Graph
Confidential: YES/NO
Decision: YES/NO
The decision is NO if data are confidential.



RULES 9a/9b.

Analysis Type: LinearRegressionCoefficients/
NonLinearRegressionCoefficients

Output: Value of coefficients.
Confidential: YES/NO
Context: Intercept is to be returned?

Decision: YES/NO

The decision is NO if {data are confidential AND intercept is one of
the coefficients to be returned}

RULE 10.

AnalysisType: RegressionResiduals/RegressionResidualsPlot
Output: Values of residuals/Plot of residuals.
Confidential: YES/NO
Decision: YES/NO
The decision is NO if data are confidential.

RULES 11a/11b.

Analysis Type: TestStatistic t/TestStatistic F
Output: Value of statistic.

Confidential: YES/NO

Context: Degrees of freedom.

Decision: YES/NO

The decision NO if {data are confidential AND degrees of freedom
< 10}.

RULE 12.
Analysis Type: FactorAnalysis
Output: Factor scores
Decision: YES

RULE 13.

Analysis Type: Correlations

Output: Matrix of correlation coefficients.



Confidential: YES/NO
Context: Number of units contributing to each correlation coefficient.
Decision: YES/NO

If data are confidential, then the decision is NO for those coefficients
that are -1,0,-1 OR that have been computed on less than 10 units.

RULE 14.
AnalysisType: CorrespondenceAnalysis
Output: Loadings of factors
Confidential: YES/NO
Context: Number of variables, sample size
Decision: YES/NO

The decision is NO if {data are confidential AND {number of variables
< 2 OR sample size < 10}}

See [2| for details on how to generate synthetic data from the above rules
that can be used to train and test a deep learning model. Given any par-
ticular rule, the basic idea is to randomly choose an Analysis Type, then ran-
domly choose an output that is compatible with the analysis type, randomly
set Confidential to YES or NO, randomly choose context attributes that fit
the expected semantics for the analysis type, and finally compute Decision
according to the decision algorithm for the rule.

To generate training data, the above procedure is followed as many times
as desired for each rule in a selected subset of rules. To obtain test data, the
above procedure should be used for the entire set of rules. In this way, one
can test how well the rules in the training data have been learnt, and how
well the deep learning model can generalize and capture the rules not present
in the training data.

3 Experimental work

We took the rules identified in the previous section, and we unified similar
rules having the same decision algorithm. That is, we merged Rules 3a, 3b,
3c into a Rule 3%, Rules 5a, 5b, 5¢, 5d into a Rule 5%, Rules 7a, 7b, 7c into a
Rule 7*, Rules 9a,, 9b, into a Rule 9*,, and Rules 11a, 11b into a Rule 11*.
This left us with 14 total rules.



Then we generated as specified in the previous section a synthetic data set
with 200, 000 training samples, with each of the 14 rules contributing approx-
imately 14,700 samples, half of which with positive decisions (the analysis
results can be released) and half with negative decisions. We trained a feed-
forward neural network with 2 hidden layers of 64 units each and obtained
a 94.08% accuracy, a 4.2% false positive rate and a 7.4% false negative rate.
Note that false positives indicate outputs that should not be released but
whose decision is YES (release) and false negatives indicate outputs that
could be released without privacy risk but whose decision is NO (do not re-
lease). We are mainly interested in a low false positive rate (FPR), since false
positives are those that are dangerous for the privacy of the respondents on
whose data the outputs are computed.

Next, we conducted a series of experiments to find out if a neural network
can generalize when exposed to samples generated from rules it has not been
exposed to during training. First, we generated a testing data set that con-
tains samples generated using the 14 rules. This testing data set was used
throughout all experiments. Then, from a number n of rules ranging from 1
to 14 we generated 100 training data sets using random subsets of n rules.
That is, we built 100 data sets with samples generated from random subsets
of one rule, 100 data sets with samples generated from random subsets of 2
rules, and so on, which yielded 1, 400 data sets with 200, 000 training samples
each. We trained a neural network like the one described above for each of
the training data sets and tested it against the previously described single
testing data set whose samples were generated using all 14 rules. The source
code and the results of our experiments are available in GitHub!.

Figure 1 displays the distributions of obtained accuracies with respect to
the number n of rules used to generate the training data sets. The figure
shows how the accuracy of the trained models increases with the number n
of rules. For a single rule (n = 1), however, the figure indicates that some
data sets result in accuracies over 80%, although the median accuracy sits
below 70% and the mode is below 60%. From n = 6 rules or more, most of
the generated training data sets result in accuracies over 80%.

Figure 2 displays the false positive rate (red) and the false negative rate
(blue) for a number of rules used to generate the training data sets ranging
fromn =1 ton = 14.

As mentioned above we are especially interested in the FPR, since it cor-
responds to released outputs that might reveal private information about the
respondents they were computed on. While the false positive rate measures
the privacy risk, the false negative rate measures the utility loss, because

https://github.com/ablancoj/output-checking
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Figure 1: Accuracy of the models with respect to the number n of rules used
to generate the training sets

it corresponds to outputs that are not released even though they could be
usefully returned to analysts without privacy risk. As expected, both rates
decrease as more rules are considered when generating the training data sets.
We also see that for n = 8 rules or more, the FPR stays below 50% and
concentrates around 15 — 20%.

4 Conclusions and future research

We have presented an approach that leverages machine learning to assist
human experts in output checking at safe data access centers. Our system
follows the rule-based model, and we have shown that it can generalize the
rules it is trained on. In our opinion, automating output checking is a pressing
need for safe access centers and decentralized data marketplaces to take off.

Future research will involve gathering real log files obtained by the current
manual output checking services. We also aim at increasing the level of
automation of the entire process. Ideally, given the code of the analysis
submitted by the analyst, it should be possible to automatically derive all
the inputs required to make rule-based decisions. Extending automation to
the principles-based model is also an important and daunting challenge.
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Figure 2: False positive rate (red) and false negative rate (blue) for a number
of rules used to generate the training sets ranging from n =1 ton = 14
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