Disclosure Metrics Born From Statistical Evaluations of Data Utility

Presented by: Devyani Biswal (University of Ottawa)
In collaboration with: Rafal Kulik (University of Ottawa), Luk Arbuckle (Privacy Analytics)
Agenda

• Background
• Privacy Models
• Empirical Results
• Ongoing Research
Context and Motivation

BACKGROUND
Context

- **k-anonymity**: Defined for categorical data.
- **Numerical data**: Generalize for k-anonymity.
- **Noise injection**: Applied blindly, won’t achieve k.
Context and Motivation

Context
- **k-anonymity**
 Defined for categorical

- **Numerical data**
 Generalize for k-anonymity

- **Noise injection**
 Applied blindly, won’t achieve k

Motivation
- **Data utility**
 Improve over existing

- **Privacy bound**
 Use the same k

- **Recipient**
 Produce meaningful statistics

Research
Theoretical

PRIVACY MODELS
Categorical Data

\[\text{Input: } X = (X_1, \ldots, X_n) \]
\[\text{Output: } X^r = (X_1^r, \ldots, X_n^r) \]

\[X_{(1)} \rightarrow G_1 = [X_{(1)}, X_{(i)}] \rightarrow G_1^r = [X_1^r, X_i^r] \]
\[\vdots \]
\[X_{(n)} \rightarrow G_n = [X_{(j)}, X_{(n)}] \rightarrow G_n^r = [X_{(j)}^r, X_n^r] \]

\[X_{(i)} \rightarrow X_{(i)}^r \text{ with uniform probability.} \]
Numerical Data

K-Noise

Input: $X = (X_1, ..., X_n)$

Output: $X^r = (X_1^r, ..., X_n^r)$

- X_1 → $X_1 + \text{Uni}(-a,a)$ → X_1^r
- X_n → $X_n + \text{Uni}(-a,a)$ → X_n^r
Experiments

EMPIRICAL RESULTS
Baseline Level of Privacy

Method: k-PRAM

Method: k-noise
Baseline Level of Privacy

Expected number or records within a neighbourhood of \([-2.5,2.5]\) years of each randomized record in X.
Data Utility Measures

<table>
<thead>
<tr>
<th>Method</th>
<th>Bias</th>
<th>Mse</th>
<th>Rmse</th>
</tr>
</thead>
<tbody>
<tr>
<td>k-PRAM</td>
<td>0.076918689</td>
<td>4.368601</td>
<td>2.090120</td>
</tr>
<tr>
<td>k-Noise</td>
<td>-0.008230827</td>
<td>2.184711</td>
<td>1.478077</td>
</tr>
</tbody>
</table>
Data Utility Visual

The clustered scatter plot represents k-PRAM randomized individuals.

The bias calculated is visibly noticeable when comparing the two methods against the true value.
Data Utility Densities
Ongoing research

Multidimensional
Extend to handle correlations, sparsity, etc.

Adaptive
Localized noise injection based on empirical distribution

Distributions
Impact on data utility from different noise profiles