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Abstract 

Statistical Disclosure Control (SDC) categorizes randomization techniques into two distinct groups: non-
perturbative and perturbative methods. The statistical limitations of these methods have been examined and 
concluded to be bounded by the classic utility-risk trade-off. This roadblock creates the motivation for our 
work; improving data utility of SDC randomization techniques from a primarily statistical perspective.  
 
Motivated by differential privacy, we study different noise distributions and the statistical properties of their 
outputs as applied to microdata. These insights lead to interesting properties of the data post-randomization, 
including asymptotic convergence of noise distributions. Experimental methods were used to compare various 
noise profiles to existing data perturbation methods such as PRAM (Post RAndomization Method) and noise 
addition in order to evaluate utility. Using statistical goodness of fit tests and risk measures, our findings 
resulted in a new randomization technique that improves data utility while ensuring a comparable level of 
disclosure risk. 
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Abstract. Statistical Disclosure Control (SDC) categorizes randomization tech-
niques into two distinct groups: non-perturbative and perturbative methods. The
statistical limitations of these methods have been examined and concluded to be
bounded by the classic utility-risk trade-off. This roadblock creates the motiva-
tion for our work; improving data utility of SDC randomization techniques from
a primarily statistical perspective.

Motivated by differential privacy, we study different noise distributions and

the statistical properties of their outputs as applied to micro data. These insights

lead to interesting properties of the data post-randomization, including asymptotic

convergence of noise distributions. Experimental methods were used to compare

various noise profiles to existing data perturbation methods such as PRAM (Post

RAndomization Method) and noise addition in order to evaluate utility. Using

statistical goodness of fit tests and risk measures, our findings resulted in a new

randomization technique that improves data utility while ensuring a comparable

level of disclosure risk.

1 Introduction

A spectrum of identifiability has been recognized by industry [7], incorpo-
rating risk-based framing so that a scalable and proportionate approach to
compliance to privacy regulations is provided. Technical models are incorpo-
rated into metrics that attempt to quantify measures of what may constitute
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a disclosure [10], and can capture a range of views that may or may not
incorporate identifiability. One key challenge, then, is understanding what
is meant by the term identifiable, and how well-established privacy models
may support efforts to render data non-identifiable. To be effective at en-
hancing privacy, however, privacy models need to be used in practice, and
that means they also need to be practical and, when used in the context
of anonymization, produce useful data [1]. Barriers that discourage or limit
the use of anonymization technology will simply drive organizations to use
identifiable data, or simply not innovate at all.

Two of the most often cited models to avoid identity disclosure are k-
anonymity [8], [9] and differential privacy [4]. The main idea of k-anonymity
is to prevent re-identification of an anonymized dataset through record link-
age attacks by grouping individuals into sets of at least k individuals with
identifiable values on their indirect identifiers (where the size if k deter-
mines the level of privacy, since the upper bound of the probability of re-
identification should be 1/k). Differential privacy, on the other hand, pro-
vides a probabilistic guarantee that the inclusion of an individual in the
dataset does not alter the outcome of a query to the dataset by more than
a specified bound (determined largely by the parameter epsilon). These two
classes of models, k-anonymity and differential privacy, are largely regarded
as two separate, non-comparable models for disclosure control; however, some
strides have been made to link key ideas between them [3].

Opinions vary regarding what should be the focus of anonymization tech-
niques with regard to the privacy-utility trade-off [5]. In this paper we ex-
plore the basis for these techniques and how we may improve the quality
of anonymized data from the perspective of producing statistically useful
data. Our goal is to maintain some base level of privacy that we can con-
cretely or objectively understand, while developing an approach that benefits
the quality of the data. We begin by considering a combination of the Post-
Randomization Method (PRAM) [6] and k-anonymity to form randomization
within groups. Inspired by differential privacy, we then model noise addition
to improve statistical properties of the output data. Establishing a relation-
ship between k-anonymity and noise addition allows us to compare privacy
levels of each technique and focus effort on maximizing data utility. Experi-
mentation shows that considerable improvements can be made to the utility
of a dataset by injecting basic noise which is selected to reflect a theoretical
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grouping size.

2 Theoretical Models

In recent years there have been efforts to connect privacy models with a
rigorous probabilistic and statistical theory; see [11], [2]. In this paper we
introduce some basic theory on some privacy models that will eventually
serve as a foundation for more a more rigorous treatment. We begin with
some notation.

Let X = (X1, . . . , Xn) be a dataset with n records. Let Y = (Y1, . . . , Yn)
be a transformed dataset. The transformation can be achieved by Post Ran-
domization (PRAM), Grouping (k-anonymity) or noise addition, as in the
case of differential privacy (DP).

2.1 PRAM

Post Randomization (PRAM) was formally introduced in [6]. The method
applies to categorical data, that is, when the possible realizations of the
random variables Xj lie in the set {ai, i = 1, . . . ,M}, where ai are real values.
The basic idea is as follows: each of Xj’s is transformed into Yj according to
the given transition probabilities:

pkl = P (Yj = al | Xj = ak) .

The disclosure risk in PRAM is measured through posterior odds, that is, the
relative probability that a rare score in the perturbed dataset Y corresponds
with a rare score in the original dataset X. These posterior odds should
be small. Data utility is measured through the increase of variance of the
estimates due to the measurement error introduced by PRAM. Theoretical
formulas for the variances are given.

2.2 k-anonymity

With k-anonymity, the dataset is divided into m subgroups according to in-
direct identifiers. These subgroups are called equivalence classes, denoted by
ECi, i = 1, . . . ,m. Each individual belongs to one and only one equivalence
class. An anonymized dataset Y provides k-anonymity, if for each individual
Yj in the given equivalence class, there exist at least k − 1 other individuals
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in the same class with identical values.

The bigger k is, the higher the level of privacy achieved. At the same time,
in order to achieve large k one needs either a large population or apply a high
level of generalization and suppression. The latter data transformations have
a negative impact on data utility.

2.3 k-PRAM (a version of k-anonymity and PRAM)

Similarly to k-anonymity, the dataset X is divided into m subgroups in such
the way that each subgroup (equivalence class) has at least k entries. If the
original dataset is inhomogeneous, with large variability and outliers, this
may not be possible to achieve. Rather, if the original data Xi follow a
specific probability distribution, then the subgroups are selected in such the
way that the expected number of entries in each of them is at least k. To be
more specific, assume that Xi’s are real-valued. Let X(1) ≤, . . . ,≤ X(n) be
the order statistics of X and define Range(X) = X(n)−X(1). Let G1, . . . , Gm

be m consecutive intervals (subgroups) of equal length

|G| = Range(X)

m
.

That is, G1 = [X(1), X(1)+ |G|), G2 = [X(1)+ |G|, X(1)+2|G|) and so on. We
require that the expected size of each subgroup is at least k:

E

!
n"

j=1

{Xj ∈ Gi}
#
≥ k .

After the data are grouped into the intervals G1, . . . , Gm, we apply ran-
domization using PRAM to each of the individual subgroups Gi separately in
such the way that the size of each subgroup remains constant and hence the
disclosure risk is at most 1/k, as with k-anonymity. For simplicity we will
call this k-PRAM to contrast with the method introduced in the next section.

Randomization can be applied in this way as a means of misleading would-
be attackers or simply to maintain data formats. As we will see in Section
2.4 this is not desirable from the data utility point of view.
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2.4 k-noise (a version of k-anonymity and noise addi-
tion)

Whereas PRAM and k-anonymity were conceived to limit disclosure risk from
microdata, differential privacy was originally proposed to limit disclosure risk
from statistical queries. As previously mentioned, differential privacy pro-
vides a probabilistic guarantee that the inclusion of an individual in the
dataset does not alter the outcome of a query on the dataset by more than a
specific bound. It became synonymous with adding noise following a Laplace
distribution.

Inspired by this idea, we combine k-anonymity with noise addition, us-
ing any suitable probability distribution and without explicitly attempting
to meet the definition of differential privacy at this time. If the data are
grouped, as with k-anonymity, and an arbitrary noise is added to individual
data points, there is no guarantee that the group sizes in the transformed
dataset are preserved. However, with carefully prescribed noise addition, the
group sizes in the transformed dataset can be controlled. As such, the dis-
closure risk can be similarly controlled as is the case of k-anonymity, which
we will call k-noise.

Once the privacy level is fixed, we can focus efforts on improving data
utility. As opposed to the randomization within fixed intervals or groups, as
described in Section 2.3, our approach does not introduce bias and hence it
has a better data utility.

As in Section 2.3, we divide the dataset into m groups Gi of length |G| =
2δ with some δ > 0. This implies that in a 2δ-neighbourhood of any record
x ∈ X, we have at least k individuals Xi:

#{j : |Xj − x| < 2δ} ≥ k .

We note however that we cannot control the number of individuals in a δ-
neighbourhood, #{j : |Xj − x| < δ}, as shown in Figure 1.

Let Y = X(r) = (X
(r)
1 , . . . , X

(r)
n ) be a randomized dataset defined by

X(r) = X + η,

where η = (η1, . . . , ηn) is a vector of independent identically distributed ran-
dom variables.
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Figure 1: Graphical representation of the δ neighbourhood of an x entry of
the dataset.

2.5 Uniformly distributed noise

We will assume in this section that ηj, j = 1, . . . , n, have an uniform distri-
bution with a parameter a > 0. If for a particular group Gi, the data Xj

are concentrated around its centre, then the choice a = δ guarantees, with a
high probability, that

#{j : |X(r)
j − x| < 2δ} ≥ k .

However, if this is not the case the bound cannot be guaranteed. Thus, the
theoretical bound must consider the worst-case scenario and be more conser-
vative. The most conservative bound guarantees that by applying a uniform
noise with parameter δ there exists at least 1

2
k other individuals within a 2δ

neighbourhood. Furthermore, we show that the underlying distribution of
the dataset is not needed in order to guarantee this bound. The theorem and
proof are provided in Section 5.

3 Experimental Results

In the first experiment we illustrate that the although the bound obtained in
Theorem 1 can be conservative in reality it close to the target value of k. This
is shown on Figures 2a and 2b. We show experimental results using a public
dataset consisting of 659 records with several categorical and numerical vari-
ables. We focus on one numerical variable of interest, Age, and aim to study
the effects of data utility when comparing two methods of anonymization.
in figure 2, the left-hand image shows the histogram of the original ages and
the right-hand image shows the histogram for the noisy data where ηj has
the uniform distribution, Unif[−δ, δ]. Using the same binning between his-
tograms, we can see that the empirical distributions for both the original and
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the noisy datasets are nearly identical and hence the data utility (measured
by an arbitrary metric) is comparable.

The difference between the k-PRAM and k-noise methods are illustrated
on Figure 3 and the proposed noise injection method in Figure 3. With
k-noise, the resulting distribution of ages is smoother, which would suggest
better utility and has the added benefit of further misleading would-be at-
tackers. The light blue clusters show the inherent bias in the dataset when
using the first method k-PRAM, versus the smooth dark blue trend formed
when using k-noise. Furthermore, we divide the Age variable into 12 groups,
each spanning an interval of 5 years on the interval [24, 79], and we can see
from Table 1 that k-noise reduces the bias and error compared to k-PRAM.

(a) k-PRAM (b) k-Noise

Figure 2: Empirical distributions of randomized dataset.
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Figure 3: Scatterplot of anonymized ages using two methods

Figure 4: Different utility measures to compare k-PRAM and k-noise.

To test this further, we employ the use of Monte Carlo simulations to get
the expected number of ages, representing individuals, in a neighbourhood
of an anonymized entry when using k-noise. k-noise can be thought of as
a local measure of k-anonymity, since the group is being compared to the
neighbourhood of adjacent points. If this number of ages exceeds or equals
the group size of the original entry, then we can determine they are ade-
quately protected within a group. We are treating the underlying dataset as
the baseline for comparing to k-noise. Our results far exceed our theoretical
bound of 1

2
k and demonstrates the effectiveness of this approach in practice.
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Figure 5: Expected number or records within a neighbourhood of [-2.5,2.5]
years of each randomized record in X

4 Conclusion

By adjusting the noise level to achieve an expected minimum threshold k,
we are able to improve the distribution of an anonymized variable over the
more common approach of randomizing within fixed intervals to satisfy k-
anonymity. This approach of noise addition allows us to leverage the well-
established concept of k-anonymity, which is easily understood and has well-
established precedents for the threshold k. We believe this will allow us to
fine-tune noise levels based on other statistical properties and make inroads
towards new approaches for privacy models.

5 Appendix: Theorems and Proofs

Theorem 1. Let X = (X1, . . . , Xn) be a dataset and X(r) = (X
(r)
1 , . . . , X

(r)
n )

be a randomized dataset defined by

X(r) = X + η,

where η = (η1, . . . , ηn) is a vector of independent uniform random variables
on [−a, a] for a > 0. Let δ > 0 and assume that for each x ∈ [X(1), X(n)] we
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have
#{j : |Xj − x| < 2δ} ≥ k .

Assume a = δ. Then

E
$
#{j : |X(r)

j − x| ≤ 2δ} | X
%
>

1

2
#{j : |Xj − x| < 2δ} =

1

2
k .

Remark 1. We note that the expectation is calculated conditionally on the
database X, hence the database entries are treated as deterministic and the
randomness is due to the noise η. Using the tower property of the conditional
distribution we also obtain

E
$
#{j : |X(r)

j − x| ≤ 2δ}
%
>

1

2
#{j : |Xj − x| < 2δ} =

1

2
k .

Proof of Theorem 1. Let Aj = −2δ−Xj + x,Bj = 2δ−Xj + x. Then, using
the properties of the uniform distribution,

E

!
n"

j=1

{−2δ < X
(r)
j < 2δ} | X

#

=
n"

j=1

E [ {−2δ −Xj + x < ηj < 2δ −Xj + x} | X]

=
2δ

a

n"

j=1

{−a < Aj, Bj < a}+
n"

j=1

{Aj < −a, a < Bj}

+
1

2a

n"

j=1

(a− Aj) {−a < Aj, a < Bj}+
1

2a

n"

j=1

(Bj + a) {Aj < −a,Bj < a}.

For a = δ the expressions above become

n"

j=1

{x− δ < Xj < x+ δ}

+
n"

j=1

(3δ − x+Xj)

2δ
{x− 3δ < Xj < x− δ}

+
n"

j=1

(3δ + x−Xj)

2δ
{x+ δ < Xj < x+ 3δ}.
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We split the last two terms as J1 + J2 + J3 + J4 with

J1 :=
n"

j=1

(3δ − x+Xj)

2δ
{x− 2δ < Xj < x− δ}

J2 :=
n"

j=1

(3δ − x+Xj)

2δ
{x− 3δ < Xj < x− 2δ}

J3 :=
n"

j=1

(3δ + x−Xj)

2δ
{x+ δ < Xj < x+ 2δ}

J4 =
n"

j=1

(3δ + x−Xj)

2δ
{x+ 2δ < Xj < x+ 3δ} =: I1 + I2 + I3.

Note that

J1 + J3 ≥
1

2

n"

j=1

{x− 2δ < Xj < x− δ}+ 1

2

n"

j=1

{x+ δ < Xj < x+ 2δ}

Ignoring J2 and J4, the expectation is bounded below by

1

2
I1 + J1 + J3 ≥

1

2
#{j : |Xj − x| < 2δ} ≥ 1

2
k .
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