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Abstract

Fingerprinting is a method of embedding a traceable mark into digital data to verify the owner and identify the
recipient of a released copy of a data set. This is crucial when releasing data to third parties, especially if it
involves a fee, or if the data is of sensitive nature, due to which further sharing and leaks should be discouraged
and deterred from.

Fingerprints are achieved by introducing modifications to the data that encode the owner's and recipient's
identifiers. Therefore, a robust fingerprint is required to achieve successful ownership protection while
affecting the data as little as possible. We focus our research on a few challenges in the domain of
fingerprinting relational data. We (i) propose a framework for evaluation and analysing fingerprinting methods
for relational data with regards to risks relating to the removal of the mark and data utility, (ii) analyse the
trade-off between fingerprint robustness and data utility and (iii) address the problem of fingerprinting
categorical data as a use-case with a smaller bandwidth for imperceptible modifications and propose a
correlation-preserving technique for categorical relational data.
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Abstract. Fingerprinting is a method of embedding a traceable mark into digital data
to (i) verify the owner and (ii) identify the recipient of a released copy of a data set. This
is crucial when releasing data to third parties, especially if it involves a fee, or if the data
is of sensitive nature, due to which further sharing and leaks should be discouraged and
deterred from. Fingerprinting is achieved by introducing modifications that encode the
owner’s and recipient’s identifiers to the data. Therefore, a robust fingerprint is required
to achieve successful ownership protection while affecting the data as little as possible. We
address a few challenges in the domain of fingerprinting relational data. We (i) address
the problem of fingerprinting categorical data as a use-case with a smaller bandwidth for
imperceptible modifications and propose a correlation-preserving technique for categori-
cal relational data, (ii) propose a framework for evaluation and analysing fingerprinting
methods for relational data with regards to risks relating to the removal of the mark and
data utility and (iii) analyse the trade-off between fingerprint robustness and data utility.

1 Introduction

Digital fingerprinting is a method that helps to protect intellectual property for var-
ious types of data and allows tracing back the recipient of the shared data instance.
By combining and embedding secret, owner- and recipient-specific, mark into the
data, fingerprinting allows identifying the source of digital objects and identifying
the source of unauthorised data leakage. Fingerprinting facilitates sharing full data
with third parties, where different recipients of the data obtain differently marked
content. Since fingerprinting does not control access to the data, it is considered
passive protection tool.

Fingerprinting techniques were first developed for the multimedia domain [Boney
et al., 1996]. The generally large amount of data required to represent this content
(e.g. images or video) offers sufficient space to embed the marks without significantly
affecting the actual content. Fingerprinting was later extended to other types of
digital data, where the effects caused by marking are of a bigger concern. These
types of content include e.g. text, software, graphs, sequential data and relational
databases. [Venkatesan et al., 2001, Yilmaz and Ayday, 2020, Zhao et al., 2015]

A fingerprint in the domain of relational (tabular) data is often realised by a
pseudo-random pattern of modifications within the values of the dataset. Most state-



of-the-art techniques address numerical data types [Li et al., 2005, Liu et al., 2005,
Guo et al., 2006, Lafaye et al., 2008, Halder et al., 2010, Kamran and Farooq, 2018|,
and significantly fewer techniques exist for categorical data types, since their discrete
nature causes larger disruptions in the data caused by marking [Sion, 2004, Bertino
et al., 2005, Sarcevic and Mayer, 2020]. Fingerprinting categorical data is bounded
by certain limitations, including the discrete nature of categorical values where the
required modifications for embedding the marks cause a discrete (and not a minor)
alteration and common correlations between attribute values that might be disrupted
by modifications. Thus, a change to a categorical value is more perceptible than the
(minor) change that is required for numerical values. In many real-world datasets,
the attributes are of mixed type. Thus, being able to address only one type of
attribute limits the usefulness of these fingerprinting techniques. The fingerprinting
technique presented in [Kieseberg et al., 2014] utilises k-anonymisation to achieve
privacy and ownership protection of a data set at the same time, making this scheme
applicable to data sets with mixed attribute types. However, k-anonymity usually
reduces the utility of the data [Sarcevié et al., 2020], which entails potentially large
utility losses for fingerprinted data sets.

In an attempt to bring fingerprinting to practical usage, one needs to address
this shortcoming and extend the applicability of fingerprinting techniques.

The quality of a fingerprinting method can generally be assessed in two ways:
(i) by the (remaining) utility of the fingerprinted data and (ii) by its robustness
against malicious attacks and benign updates of the dataset. Data modifications
introduced by a fingerprint inevitably decrease data utility, however, these effects
can be diminished by carefully tuning the fingerprinting parameters. It is, therefore,
important to assess and estimate the utility losses introduced by applying the desired
fingerprinting scheme. An attack is a collective notion of different types of attempts
to prevent the correct detection of a fingerprint. A malicious attacker might modify,
delete or add values to the fingerprinted data with the aim to modify or erase the
fingerprint. These modifications generally result in an additional decrease in data
utility — therefore a fingerprint is considered robust if cannot be removed without
significantly reducing data utility.

In this paper, we present our approach for fingerprinting data sets containing
categorical data types. We further propose evaluation steps for assessing fingerprint
robustness and data utility. We discuss the trade-off between robustness and utility,
and the challenge of good parameter choice for fingerprinting.

The paper is organised as follows: In Section 2 we explain the background of fin-
gerprinting relational data, in Section 3 we discuss the special case of fingerprinting
categorical data, in Section 4 we introduce the evaluation process for robustness and
utility of the fingerprinting schemes. Finally, in Section 5 we bring conclusions and
future work.
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Figure 1: Fingerprinting process

2 Background
2.1 Fingerprinting schemes

A fingerprinting scheme is in principle encompassing two main processes - embedding
(a.k.a. insertion) and extraction (a.k.a. detection). This workflow is shown in
Figure 1. Within the embedding process, the fingerprint string is first created as
a function of the owner’s secret key and the recipient 1D, usually using a hash
function. Secondly, the fingerprint, i.e. the string which is unique to each recipient,
is embedded into the data as a pattern of modifications made on data values. The
pattern itself depends on the scheme. For example, [Liu et al., 2005] propose a
scheme where the data is first divided into several blocks, of which each is associated
with one fingerprint bit. The authors of [Guo et al., 2006] propose a pattern where
the fingerprint bits are embedded in two separate phases. Nevertheless, the patterns
depend on pseudo-random number generation, seeded by the owner’s secret key.
This ensures that only with access to the secret key, the pattern can be recreated,
but not otherwise, even if the algorithm steps of the embedding scheme are known.

Fingerprint extraction is the reverse process of embedding. Using the secret key
and the fingerprinted dataset, the marks are recreated into a fingerprint uniquely
associated with a data recipient. One of the desired properties for a fingerprinting
scheme is blindness. In a blind scheme, the extraction algorithm does not need the
original dataset rows to identify the correct fingerprint. The blindness property
contributes to security of the fingerprinting process, since less information needs to
be securely stored in order to extract the fingerprint.

If the extraction process is not disrupted, the matching between a data copy and
its recipient should be successful. However, the process may underlay certain mali-
cious attacks or benign modifications to the dataset. This may affect the detection
algorithm, therefore one needs to ensure the scheme is robust by design. Secondly,
the fingerprinted data set is shared with third parties, and therefore its credibility
and utility need to be preserved, despite the modifications made by the process of
embedding. These two concerns are discussed in the following.

Parameters We can classify parameters relevant in the workflow in two main
groups — parameters that are inherent properties of the dataset and the parameters



that are describing properties of a fingerprinting scheme, i.e. the way the fingerprint
is created and embedded into the dataset. The effect of the first group of parameters
can be analysed throughout a big-scale evaluation using a great variety of datasets.
In this work we focus on the latter group of parameters, namely:

e absolute, n_marks, or relative number of marks in the dataset (rel. to the
total number of data rows) %_marks

e number of attributes chosen for marking, absolute n_attributes or relative
%_attributes

e magnitude of modifications, e.g. for numerical values the number of least
significant bits available for marking

e length of a fingerprint L

In different works, these parameters are expressed by differently named parameters
(e.g. in [Li et al., 2005 %_marks — =, magnitude — & in [Guo et al., 2006]
%-marks — (3, etc.), thus we unify the nomenclature to enable application of our
process on a range of different schemes.

2.2 Robustness

The robustness of a fingerprinting scheme is measured as the resilience of the scheme
against modifications and malicious attacks. In literature, robustness is usually mea-
sured as to how insusceptible the scheme’s detection algorithm is against different

types of attacks. For relational datasets these usually are [Kamran and Farooq,
2018]:

e subset attack (deletion attack): The attacker releases only a subset of the
fingerprinted data set, either as a subset of tuples (records, rows) in a horizontal
or a subset of attributes (features, columns) in a vertical subset attack

e flipping attack (alteration attack): the attack comes in different flavours for
different data types. For categorical values, the attacker flips selected values to
random values from the domain; for numerical values, the attacker flips some
of the least significant bits.

e superset attack (record-insertion attack): the attacker adds (synthetic) rows
to confuse the detection process

e additive attack: the attacker produces and embeds their own fingerprint on
top of the existing one, to try and claim the false ownership of the data

Robustness may be expressed via a number of measures. As proposed in [Li
et al., 2005], those are:



o Misdiagnosis false hit (fh?): The probability of detecting a valid fingerprint
from data that has not been fingerprinted.

e Misattribution false hit (fh*): The probability of detecting an incorrect but
valid fingerprint from fingerprinted data, i.e. a wrong suspect.

e [alse negative (fn): The probability of detecting no valid fingerprint from
fingerprinted data, i.e. no suspect.

e False miss (fm): Inability to detect the correct fingerprint. False miss rate is
the sum of the misattribution false hit and false negative, i.e. fm = fh*+ fn.

fhP is a property of the fingerprinting scheme, while the latter three metrics
measure the success of the attacks applied on the data (i.e. if there is no attack,
they should be equal to zero). Successful attacks are considered those that cause
a high rate for these three measures, while not rendering the data useless, i.e. not
distorting the data too much by the attack. Data utility is often not discussed in
detail nor evaluated in the literature. In our framework, we, however, include an
evaluation of the data utility after an attack, which is described in Section 4.1.

2.3 Data utility

Modifications introduced by data fingerprinting unavoidably change the data, and
thus likely its utility. Preserving data utility is hence a conflicting goal that needs
to be taken into consideration when fingerprinting relational data alongside the
robustness of the scheme. The literature mentions two ways to measure the preserved
utility on the fingerprinted data: (i) changes in data statistics such as mean, variance,
distributions, etc. [Li et al., 2005], i.e. data-oriented utility metrics and (ii) effect of
fingerprint modifications on learning tasks such as learning a predictive classification
model [Sarcevié and Mayer, 2019], so-called task-oriented utility metrics. The latter
is a more specific notion of effectiveness in a scenario where a data holder has certain
usage in mind for their data, such as a predictive task on one of the attributes. A
utility notion along this lines is thus the performance loss when using fingerprinted
data for the (same or a similar) task the data holder has aimed for, compared to
performing it on the original data.

3 Fingerprinting categorical data

Fingerprinting categorical data in relational data set got considerably less attention
in literature. The reason for this is certain limitations that categorical data poses
in comparison to numerical data. Firstly, the embedding channels for modifications
are rather low due to the discrete nature of categorical data. Numerical data has
the advantage that modifying a value by a small margin will normally not affect the
data as a whole. This, for example, is shown in our evaluations in Section 4. For



categorical (nominal) data, it is hard, or even impossible, to quantify the amount
of modification, hence hard to apply a minor modification. We assume that modifi-
cations such as changing one character in the value representation are not desirable
modifications since it’s easily perceivable and hence removable. Secondly, it is likely
that the discrete modifications within the data will disrupt the mutual semantic cor-
relations between the attributes. Modifying attributes independently may lead to
obtaining non-consistent records, by introducing an uncommon or impossible com-
binations of values in the data. For example, consider a medical database containing
attributes such as sex and numberOfPregnancies — a record containing (sex :male,
numberOfPregnancies:1) will be highly suspicious.

Our approach for fingerprinting categorical data addresses the problem of dis-
rupting the correlations in the data to ensure a less perceivable fingerprint [Sarcevic
and Mayer, 2020]. The scheme follows the process outline described in Section 2 and
Figure 1. The fingerprint creation and embedding pattern follow the steps of [Li
et al., 2005]. This means that the fingerprint is created using a hash function and a
combination of the data holder’s secret key and the recipient’s ID. The location of
the values to be modified by the fingerprint bits is made based on a pseudo-random
number generation seeded by the owner’s secret key. Further, whether or not the
chosen value will be modified depends on the value of the corresponding fingerprint
bit, 0 or 1. This step is useful for recreating the fingerprint in the detection phase.
For value modification, we propose a k-NN-based method. Once the value to be
modified (defined by (attribute,row)) is determined by the pseudo-random num-
ber generator, the algorithm finds the n neighbours of the row of the chosen value.
The new value is then chosen from the set of attribute values in the neighbour-
hood, weighted by their frequency. The insertion algorithm enables preserving the
correlations between categorical attributes by eliminating the occurrences of value
combinations that were not initially in the original data set, and preserving the low
frequency of value combinations that were already rare in the original data set.

The detection phase inverts the embedding process: from marked values, the
pseudo-random number sequence is recovered and hence the fingerprint bits. The
full algorithmic steps are shown in Algorithm 1.1 and 1.2 from [Sarcevic and Mayer,
2020]. The scheme is however not blind, since the values from the original dataset
are necessary to extract the fingerprint. Our future work will consider adapting the
extraction algorithm in a way that less information about the original dataset is
needed, such as attribute histograms instead of full data entries.

4 Fingerprint scheme evaluation process

An evaluation process of fingerprinting schemes contains two main parts: (i) analysis
of the utility of the fingerprinted data and (ii) robustness analysis. The aim of the
data holder is to embed a robust fingerprint into the data, i.e. a fingerprint that



can not be easily removed by malicious attacks or benign updates on the dataset,
while at the same time keeping the utility of the dataset on an acceptable level. In
the following, we discuss the particular elements of the two parts of the process in
detail.

4.1 Data utility

The proposed evaluation encompasses the utility evaluation according to two groups
of metrics described in Section 4.1.

Data-oriented metrics help to get an insight into the amount of modification that
is introduced due to the fingerprint. For instance, we measure the change in mean
and variance of numerical attributes

Task-oriented utility metrics are measured under the assumption that the pur-
pose of the data is to serve as a training set for predictive modelling with a defined
target attribute and, to that end, estimate the utility loss. For that purpose, we
train a number of well-known machine learning models, using the fingerprinted data
as a training set, and evaluate the models on the original, unmodified holdout set via
performance metrics such as accuracy or F1 score in case of the classification task, or
e.g. mean squared error (MSE) for a regression task. We then train and evaluate the
same types of models on the original data and compare the performances. The per-
formance loss (i.e. accuracy loss, MSE loss, ...) serves as a main metric for assessing
data utility in the task-oriented group of metrics either as (i) absolute performance
loss (the absolute difference in performance metric) or (ii) relative performance loss
(absolute performance loss divided by the performance on original data set).

Table 1: Effect on F1 score and classification accuracy with Logistic Regression, on the Adult
dataset fingerprinted using [Li et al., 2005] via absolute performance loss, with € denoting the
number of LSBs available for modification (i.e. magnitude)

=1 =2 £E=6

%-marks F1 accuracy F1 accuracy F1 accuracy
2% -0.15%  -0.07% | -0.02%  -0.03% | -0.03% -0.02%
4% -0.25%  -0.14% | -0.13%  -0.06% | -0.14% -0.06%
8% -0.46%  -0.22% |-0.27% -0.12% | -0.39%  -0.15%
17% -0.68% -0.38% |-041% -0.22% | -0.80% -0.33%
33% -2.12%  -1.01% | -1.08% -0.52% |-1.33% -0.62%

We observed trends in effects on classification accuracy and F1 score that the
fingerprinting has under different parameter settings in [Sarcevié¢ and Mayer, 2019),
obtaining usually a minor degradation in performance. This can be shown by the
example of our results in Table 1, where we compare the F1 score loss and accuracy
loss of the logistic regression models using Adult dataset! under different settings

"https://archive.ics.uci.edu/ml/datasets/adult



for parameters %_marks and magnitude.

4.2 Robustness

The robustness of the scheme is assessed by its resilience against modifications on
the datasets, or other attempts of confusing the detection process of the scheme.

Attacker model We define the attacker model, a white-box naive attacker, which
will be applied to all considered attacks in the continuation of the paper.

White-box access: The attacker is assumed to know the algorithmic steps of
the embedding and extraction processes, and all fingerprinting parameters, such as
length of a fingerprint, strength and magnitude. Only the owner’s secret key remains
unknown to the attacker.

Naive attacker: The attacker does not use any background knowledge about the
data set and all the modifications (flipping, deletion, etc.) are applied randomly
to the data values, i.e. each value has an equal probability to be attacked. We
use the naive attacker model to create a baseline for the robustness estimation and
comparison with attacks by the attacker with certain background knowledge in our
future work.

Robustness estimation The robustness estimation in our process is focused on
misdiagnosis false hit metric (fhP € [0,1]) and false miss metric (fm € [0,1]),
which encompasses the other two mentioned metrics in Section 2.2, misattribution
false hit and false negative. Robustness is empirically evaluated by recording the
detection rate of the scheme under random attacks. Lower fh” and higher fm
indicate stronger attacks. In the following, we highlight some robustness evaluation
results from [Sarcevi¢ and Mayer, 2019)].

Table 2: Misdiagnosis false hit rate fhP for exemplary fingerprint sizes L in bits

L 8 16 32 64 128

FhP (n_marks = 800)) | 0.7208 | 0.0052 | 2.70 x 107 | 7.30 x 10~1° | 5.31 x 1033

fhP (n_marks = 400) | 0.9151 | 0.0084 | 7.01 x 1077 | 4.92 x 1071 | 2.42 x 103!

Misdiagnosis false hit depends on the length of the fingerprint L and the absolute
number of marks n_marks. Table 2 shows the exponential dependence of the fh”
on L, hence choosing a fingerprint of length > 32 is a rule of thumb.

Furthermore, we analysed fm rates for a number of malicious attacks on the
dataset and we compared the rates between different datasets (Adult and Forest
Cover Type?), as shown in Table 3 for horizontal subset attack and between different
schemes in Table 4 for flipping attack. A general observation is that setting the

https://www.kaggle.com/c/forest-cover-type-prediction



Table 3: Dataset comparison: Ezperimental results of subsel attack success (fm) against the
scheme [Li et al., 2005], on the Forest Cover Type dataset (left) and Adult (right), where p’ denotes
the strength of the attack

%-marks | p =80% | p' = 95% | p' = 99% P =80% | p =95% | p = 99%
17% 0 0 0.01 0.20 0.95 1.0
4% 0 0 1.0 0.99 1.0 1.0
2% 0 0.19 1.0 1.0 1.0 1.0
1% 0 0.99 1.0 1.0 1.0 1.0

Table 4: Scheme comparison: Experimental results of flipping attack success (fm) on the Adult
dataset against scheme [Li et al., 2005] (left) and Block scheme [Liu et al., 2005] (right), where p’
denotes the strength of the attack

%-marks | p =30% | p' =40% | p' = 45% p =30% | p =40% | p' = 45%
20% 0 0.50 0.56 0 0 0.50
8% 0 0.50 1.0 0 0.50 0.92
4% 0 0.54 1.0 0.08 0.50 1.0

%-marks to high values (i.e. marking a lot of data values) results in lower fm
rates, i.e. better robustness for the scheme, making this one of the main control
parameters for achieving good robustness of the scheme. From the comparison on
fm between datasets, there is a clear advantage in marking a bigger dataset, such
as Forest Cover Type, over a smaller one, in this case, Adult. This implies that it
is crucial to consider data properties for defining a robust scheme and choosing its
parameters.

4.3 Utility-robustness trade-off

From the evaluations on utility and robustness, it is evident that some parameters
have conflicting effects on data utility and robustness — by tweaking parameters in
favour of one, the other one would decline. Hence, a good trade-off needs to be
achieved for applying fingerprints successfully. For some parameters such as L, a
general rule for the choice exists, that would lead to a robust scheme. However, other
parameters such as n_marks or magnitude should likely be differently set depending
on data properties.

5 Conclusions and Future Research

This paper summarises the recent developments in the field of fingerprinting rela-
tional data sets such as utility and robustness evaluation on different techniques,
task-oriented utility metrics and fingerprinting categorical data with a focus on pre-
serving the semantics of the data set.

The focus of our future work is to bridge the gap to the practical application
of fingerprinting techniques. To this end, we aim at two main goals: (i) designing
tools for fingerprinting relational data in practice, and (ii) aiding the fingerprint
parameter choice for the data-holder. The first goal requires an approach for a
unifying fingerprinting scheme, that would apply to all data types in a data set and



an open-source implementation. The second goal is motivated by the observation
that choosing a good parameter setting is a black-box for a data holder unless a
sufficient utility and evaluation analysis has been done. Hence, we recognise a need
for a parameter choice guideline, that would guide a data holder through the choice
and indicate the robustness risks and expected utility losses. To this end, we will
expand our analysis to capture the general patterns and trends of robustness and
utility for certain parameter choices and dataset properties and based on this, (semi-
Jautomatise the process of parameter choice.
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