

CHIN-TO-CHEST CONTACT OCCURS IN FF CRS IN FRONT IMPACT AND RF CRS IN REAR IMPACT

Q1.5 FF Integral harness – R129 Front impact

Chin-to-chest contact increases tensile neck force, potentially beyond the purely inertial peak

MOST TESTS EXAMINED WITHIN CLEPA SHOW SOME INFLUENCE OF CHIN-TO-CHEST CONTACT

Q1.5 FF Integral harness – R129 Front impact

MOST TESTS EXAMINED WITHIN CLEPA SHOW SOME INFLUENCE OF CHIN-TO-CHEST CONTACT

Q0 RF Integral harness – R129 Rear impact

Chin-to-chest contact typically aligned with peak neck force in RF CRS in rear impact – harder to distinguish effects reliably

WE CAN'T CHECK THE FREQUENCY OR EFFECT OF CHIN-TO-CHEST CONTACT ON OUR ANALYSIS SAMPLE OR LIMIT PROPOSALS

If a large part of the sample was affected, our limit values would be **skewed upwards** – as would subsequent measurements

Mitigating chin-to-chest contact may be prioritised over inertial neck loading

INSIA PROPOSED A METHOD TO CALCULATE INERTIAL NECK FORCE (HEAD MASS*VRT. HEAD ACCELERATION)

To compute only inertial forces

$$F_Z|_{IA} = M_{H + \frac{1}{2} \cdot LC} \cdot A_Z$$

 $F_{Z}|_{I_A}$: Neck force for Injury Ass.

 $M_{H+\frac{1}{2}LC}$: Head and LC part mass

 A_Z : Head Z acceleration

$$M_{H+\frac{1}{2}\cdot LC} = 2.2 \div 2.18 \text{ kg}$$

$$F_Z(N) = 2.2 \cdot A_Z(g) \cdot 9.80665$$
68th GRSP, 8th December 2020.

Q1.5 FF Integral harness – R129 Front impact

Can the method guarantee that **neck force would not be higher if contact had not occurred** (or if nature/timing of contact was different)?

INSIA METHOD CAN PREDICT PRE-CONTACT NECK FORCE MEASUREMENT

Q1.5 FF Integral harness – R129 Front impact

What would happen if there had been no contact, or the timing was different?

INSIA METHOD CAN PREDICT PRE-CONTACT NECK FORCE MEASUREMENT

Q0 RF Integral harness – R129 Rear impact

What would happen if there had been no contact, or the timing was different?

Experiments

Vs.

Adapted head created by Cellbond (currently Q3 and Q6 only)

Front impact: Q3 in FF Integral Harness CRS

All methods give the same result (i.e. standard head ignoring contact phase, adapted head or INSIA method)

Front impact: Q3 in Booster Seat A

Rapid drop-off in INSIA calculated inertial force seems unrealistic and suggests contact itself can influence vertical head acceleration (and hence this calculated force)

Front impact: Q3 in Booster Seat B

Broad peak duration in INSIA method seems unrealistic and may be masking true inertial force had contact not occurred (as suggested by adapted head with lesser contact)

Rear impact: Q3 in RF Integral Harness CRS

Marginal contact
with standard head
(i.e. <500 N),
reduced to
negligible level with
adapted head. INSIA
method predicts
inertial force
reasonably well

INSIA METHOD CAN LEAD TO STRANGE RESULTS WHEN NO CHIN-TO-CHEST CONTACT OCCURS

Q0 FF Integral harness – R129 Front impact

The calculated inertia force can be higher than the measured force – Technical Services would need to determine if/when the method is appropriate

CONCLUSION

Using measured force vs. calculated inertial force

- Chin-to-chest contact likely skewed type-approval monitoring analysis of measured neck tension force
 - Limit values and subsequent measurements likely to be skewed upwards
- INSIA's calculated inertial force method would reduce limit values and measurements; <u>but</u>
 - Neck force is not really measured (only vert. head acceleration)
 - It doesn't work very well when contact occurs at the same time as peak inertial loading (especially RF CRS in rear impact)
 - Chin-to-chest contact may reduce the calculated inertial force dummy chin-to-contact would be incentivised by regulation

PROPOSAL

For discussion with Contracting Parties

- Adopt neck tension force limits in R129 based on measured typeapproval monitoring data as proposed in GRSP-68-05
 - No reanalysis of data required
 - Simple for technical services
- Investigate Q-Series chin adaptation as per Cellbond prototypes
 - Neck force limits could be revised down if dummy changes
- Limits are validated values based on CRS performance in current R129 test conditions
 - Changing the test conditions would necessitate new analyses and limits

Further reading

Sochor MR, Faust DP, Anderson KF, Barnes S, Ridella SA, Wang SC (2006). Assessment of 3 and 6-year-old neck injury criteria based on field investigation, modeling, and sled testing. SAE Trans. 115: 183–209.

Stammen JA, Bolte JH, Shaw J (2012). Biomechanical impact response of the human chin and manubrium. Ann Biomed Eng. 40(3): 666–678. doi:10.1007/s10439-011-0419-x.

Visvikis C, Thurn C, Kettner M, Müller T (2020). The effect of chin-to-chest contact on upper neck axial force in UN Regulation No. 129 frontal impact tests of child restraint systems. Traffic Inj Prev. 21(sup1):S173-S176. doi: 10.1080/15389588.2020.1829923.

Visvikis C, Thurn C, Müller T (2021). The effect of Q-Series dummy adaptation on the prevalence of chin-to-chest contact and its influence on upper neck tension force in UN Regulation No. 129 tests. Proceedings of the 19th International Conference Protection of Children in Cars, Munich, Germany.

E**

Q6 in Booster Seat A

Another rapid drop-off in INSIA method force

E**

Q6 in Booster Seat B

