

#### **PROPOSAL**



- CLEPA propose to increase the height of the support leg volume to improve compatibility between support leg volume and ISO/R2 & ISO/F2X volumes
- This change would require R129 & R16 to be updated with this modification (GRSP/2021/25 & GRSP/2021/26)
- This change is important for large rearward facing ECRS designs
- This change will not reduce the support leg compatibility with vehicles



#### **JUSTIFICATION** (1/6)



#### Dimensions in millimetres

- UN Regulation No. 16 defines the envelope dimensions of ISO/R2 & ISO/F2X CRF envelopes
  - Dashed line 2) represents the area where a support leg or similar may protrude. For the ISO/F2X envelope, this is indicated with a height of 200 mm (red dotted line)
- The proposal is to increase the support leg volume height to match this 200 mm dimension



## **JUSTIFICATION** (2/6)



- Increasing the height of the support leg volume would create a better match with both i-size ISO volumes
  - Particularly useful for large rearward facing CRS designs with support legs
  - Will increase design space for support leg & misuse mechanisms & electronics for user misuse warnings
  - Environmental benefits improved load paths leads to a reduction in materials
  - Potential to reduce CRS weight, improving handling for consumers



## **JUSTIFICATION** (3/6)



• The additional support leg volume already overlaps with the ISO/R2 volume and therefore little or no extra space is required (depending on ISOFIX position)







## **JUSTIFICATION** (4/6)

**E**\*\*

- The additional space required by extending the support leg volume is available in vehicles that can already fit the support leg volume
- This additional support leg volume unused in the vehicle (100 vehicles)
- If contact between the child seats and vehicle seat occurs, it is at the top
  of the seat, not where the additional support leg volume would be





# **JUSTIFICATION** (5/6)

**E**\*\*

- Additional support leg volume unused in the vehicle
- Vehicle contact between child seats and vehicle seat occur at the top of the seat
- Examples (Small Off-Road)











# **JUSTIFICATION** (6/6)

**E**\*\*

- Additional support leg volume unused in the vehicle
- Vehicle contact between child seats and vehicle seat occur at the top of the seat
- Examples (Supermini)







#### **CONCLUSION**



- Increasing the height of the support leg volume would improve compatibility between support leg volume and ISO/R2 & ISO/F2X volumes
  - Will increase design space for support leg & misuse mechanisms
     & electronics for user misuse warnings
  - Environmental benefits improved load paths leads to a reduction in materials
- This change is important for large rearward facing ECRS designs
- This change will not reduce the support leg compatibility with vehicles

