

Input Privacy-Preservation Techniques Project

Privacy Set Intersection with Analytics

Massimo De Cubellis, Mauro Bruno, Fabrizio De Fausti, Monica Scannapieco (ISTAT)

Definitions

Private Set Intersection (PSI) is a problem within the field of <u>Secure multi-party computation</u>.

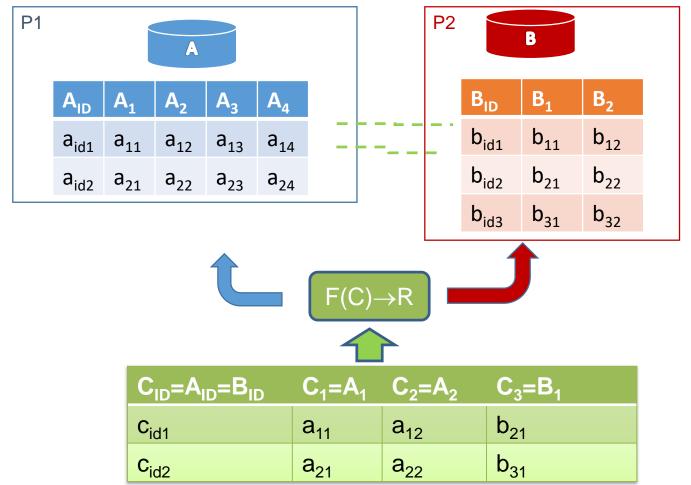
Secure multi-party computation (SMPC) is a subfield of cryptography with the goal of creating methods for parties to jointly compute a function over their inputs while keeping those inputs private.

The PSI problem:

There are two friends Alice and Bob such that Alice has a set of items A=(a1,...,an) and Bob has the set B=(b1,...,bn).

The goal is to design a protocol by which Alice and Bob obtain the intersection A∩B, under the restriction that the protocol must not reveal anything about items that are not in the intersection.

Scenarios for Privacy Set Intersection


Four scenarios:

- Private Set Intersection (PSI)
- Private Set Intersection with Enrichment (PSI-E)
- Private Set Intersection with Analytics (PSI-A)
- Private data mining (PDM)

PSI – Private Set Intersection with Analytics

 $C (C_{ID} = A_{ID} = B_{ID}, C_1 = A_1, C_2 = A_2, C_3 = A_3) = A \cap B = \{c_{id1} = a_{id1} = b_{id2}, c_{id2} = a_{id2} = b_{id3}\}$

Private Set Intersection with Analytics Case Study: Istat and Bank of Italy

- Two phases of the protocol: offline and online
- Offline phase:
 - The two parties want to share datasets of individuals that have a common key that is the Fiscal Code.
 - Agree to share some variables:
 - Istat: Number of Children, Age Class
 - Bank of Italy: *Income class, type of mortgage payment, payer type*
 - Share a symmetric key through RSA protocol
 - Share IP addresses to use

Case Study: Istat and Bank of Italy

- Online phase:
 - Private Set Intersection
 - E. De Cristofaro and G Tsudik

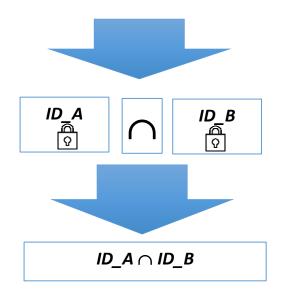
 Practical Private Set Intersection Protocols with linear Computational and Bandwidth Complexity.

 proc Financial Cryptography and data Security, 2010.
 - Loading: encrypted data transmission to the Linker;
 - Query: submission of queries to the Linker and transmission of results.

Private Set Intersection phase

ISTAT (Client)

(Datataset A: ID_A , A_1 , A_2)


BANK of ITALY (Server)

(Datataset B: ID_B , B_1 , B_2 , B_3)

 $F(ID_A \bigcirc , ID_B \bigcirc)$, Parameters \longleftarrow

- Calculate a function that use as input: ID_A encrypted, ID_B encrypted, and a set of parameters
- Send the function to ISTAT

Loading phase

The encrypted datasets of the two parts are uploaded on the Linker server

ISTAT (Dataset A)

- ISTAT shares a symmetric key (SymKey) with BANK of ITALY to encrypt dataset A
- ISTAT encrypt the dataset A for only the records whose key
 (ID_A) belongs to the intersection (ID_A∩ID_B):
 {K(ID_A), K(A₁), K(A₂)} where K is an encryption function (e.g. AES_ECB) using the shared SymKey
- ISTAT sends the encrypted dataset A to the third party (Linker)

BANK of ITALY (Dataset B)

- BANK of ITALY shares a symmetric key (SymKey) with ISTAT to encrypt dataset B
- BANK of ITALY encrypt the dataset B for only the records whose key (ID_B) belongs to the intersection (ID_A∩ID_B): {K(ID_B), K(B₁), K(B₂), K(B₃)} where K is an encryption function (eg. AES_ECB) using the shared SymKey
- BANK of ITALY sends the encrypted dataset B to the third party (Linker)

TCP/IP

LINKER

SymKey

It stores, locally, the two encrypted datasets A and B received from Istat and the Bank of Italy

TCP/IP

Query phase (analytics)

ISTAT

- ISTAT, in asynchronous way, sends a query to the Linker (eg: queryString = NUMBER_OF_CHILDREN, INCOME_CLASS);
- ISTAT receives the result of the query from the Linker

BANK of ITALY

- BANK of ITALY, in asynchronous way, sends a query to the Linker (eg: queryString = INCOME_CLASS, KIND_OF_MORTGAGE_PAYMENT, AGE_CLASS);
- BANK of ITALY receives the result of the query from the Linker;

TCP/IP

LINKER

- Receives requests (query group by / counts)
- To perform the required count, it join the IDs of the two encrypted datasets received in the loading phase
- Send the result of the query to the requester

Characteristics

- Transmission to the third party of only the encrypted and strictly necessary data;
- The two parties do not exchange data directly, except those necessary to calculate the intersection on the A∩B keys, but use a neutral third party;
- Information enrichment takes place only in terms of aggregated data (counts);
- The third party can carry out checks on the counts returned and ensure that the result cannot be traced back to the individual elements of the population.
- Privacy preservation is not guaranteed in the event that one of the two parties agrees dishonestly with the third party

References

- 1) EMILIANO DE CRISTOFARO AND GENE TSUDIK, PRACTICAL PRIVATE SET INTERSECTION PROTOCOLS WITH LINEAR COMPUTATIONAL AND BANDWIDTH COMPLEXITY, PROCEEDINGS OF FINANCIAL CRYPTOGRAPHY AND DATA SECURITY, 2010
- 2) DAVID EVANS, VLADIMIR KOLESNIKOV AND MIKE ROSULEK, A PRAGMATIC INTRODUCTION TO SECURE MULTI-PARTY COMPUTATION. NOW Publishers, 2018.
- 3) A. ACAR, H. AKSU, AND A. S. LUAGAC, M. CONTI A SURVEY ON HOMOMORPHIC ENCRYPTION SCHEMES: THEORY AND IMPLEMENTATION, 2017, https://arxiv.org/abs/1704.03578
- 4) Sophia Yakoubov; Vijay Gadepally; Nabil Schear; Emily Shen; Arkady Yerukhimovich, A survey of cryptographic approaches to securing big-data analytics in the cloud IEEE High Performance Extreme Computing Conference (HPEC), 2014

Thanks for your attention !!!