Break

10 mintues

A note on Chapter 4: Disclosure considerations for synthetic data

- Disclosure risk is the risk of inappropriate release of data or attribute information of a record (often individual).
- Although no record in a (fully) synthetic data file corresponds to a real person or household, there is concern that attribute and identification disclosure risk could still be present.
- Recommendation: NSOs should choose additional disclosure controls based on their own legislative and operational frameworks.
- The purpose of this chapter is to present disclosure control options available to NSOs and their synthesizers

Privacy Preserving Techniques:

- K-anonymity
- *ℓ*-diversity
- *t*-closeness
- Differential privacy

Disclosure Risk Measures:

- Peer review
- Feature Mean Scaled Variance
- Rates related to database reconstruction

Sli.do Poll: #034032

Tell us more about disclosure considerations in your NSOs for real data and synthetic data.

Methods and Measures to assess Utility

Does your synthetic data meet user needs?

What is utility in the synthetic data context?

- How useful a synthetic data set is to the purpose of the data
- A great challenge with synthetic data is balancing utility and disclosure risk

Where to Start?

Specific Measures

- Specific utility measures compare the results of statistical models fitted to the synthetic and the original data.
- The results of any statistical analysis can be used to create a utility measures
 - Impact on policy decisions
 - Difference in means of variables
 - Differences in correlations
 - Tables and cross-tabulations
 - Task accuracy differences
 - Generalised Linear Models (GLMs)

Example of task accuracy

Classification accuracy trained on original US Adult Income data set and synthetic data sets generated with GANs, with different values of privacy loss ϵ (Kaloskampis et al. 2020).

Specific measures

Any statistic with a standard error or interval estimate

- Summary measures
 - Standardised difference
 - Confidence interval overlap
- For statistical models
 - Average overlap for all coefficients
 - Mahalanobis distance ratio is a combined standardised difference

Confidence interval plot

Coefficients and interval estimates for a logistic model predicting the probability of not-smoking from age, sex and education..

Raab & Nowok, Inference from fitted models in synthpop.

What are General Utility Measures?

- Often the synthesizer does not know the specific use of the synthetic data
- A measure (just one number) that compares the whole distribution of the synthetic data to that of the original data

Methods to calculate General Utility

Combine original and synthetic data and try to predict the synthetic from a propensity score

Make tables of original and synthetic data and calculate a measure based on their **differences**

Propensity score mean squared error (pMSE)

Kolmogorov- Smirnov Statistic comparing propensity scores for original and synthetic data (SPECKS)

Percentage over 50% of combined records correctly predicted by the propensity score (PO50)

Other comparisons of propensity scores for original and synthetic data, e.g Wilcoxon signed rank statistic (U)

Tabular Measures

Voas-Williamson statistic

Freeman-Tukey

Likelihood ratio statistic from tables (G) and other members of the divergence family

Jensen-Shannon Divergence

Bhattacharyya metric

Mean absolute difference in densities

Weighted mean absolute difference in densities

How do you calculate the propensity score?

Any method to predict a binary variable will do.

Methods

Logistic regression

Classification and regression trees (CART)

Any other classification method – neural nets, random forests,......

Form tables and calculate proportions of synthetic to all records in each corresponding cell.

An n-way table is the same as a saturated logistic regression model for the n-variables

General Measures recap

- Many different measures have been proposed
- Some are the same as each other (e.g. pMSE from propensity scores and Voas Williamson from tables)
- All are highly correlated when calculated by the same method
- The method used to calculate the measures is more important than the choice of measure
- Raab Nowok and Dibben, 2021 Assessing, visualizing and improving the utility of synthetic data. https://arxiv.org/pdf/2109.12717.pdf
- It may be useful to calculate measures for subgroups of variables or subsets of the data

Scaling

- It is helpful if the utility measures can be on a scale that makes them easy to interpret.
- For all the measures presented a large value indicates lack-of utility
- Another approach to scaling utility measures is to express them relative to the value that would be expected if the model used to synthesize the data was the "correct" model.
 - The expected value for the "correct" model can be termed the Null expectation.

Tuning

- To adapt the synthesis method being used in the light of utility findings about
 - Which variables, or combinations of variables, are contributing to the lack of utility
 - Any subsets of the data that may have poor utility
- Often one number is not enough: If the utility appears unsatisfactory they need to know which aspects of the distribution are causing the problem.
 - Univariate comparisons
 - Marginal comparisons
 - Comparing other statistics

One way tables

Selected utility measures:

	-		
S	_pMSE	df	
sex	0.55	1	
income	1.00	6	
age	1.05	4	
edu	0.36	4	
socprof	0.40	9	
trust	0.90	3	
height	2.97	5	
weight	52.67	5	
smoke	0.54	2	
region	1.39	15	

Methods for exploring utility

 However, even after there is good performance on univariate distributions, there may be issues with correlations between features, or subgroups within features.

 Visualising two-way the utility of all two-way tables can be helpful

Example of marginal comparisons

Visualizations of the utility of all two-way relationships between variables

Methods for exploring utility

 On larger problems (>10 variables), randomized three-way marginals can be algorithmically searched for poorperforming feature correlations, using Frequent Item-set analysis.

 Once basic evaluations are complete, subgroups in the population should be evaluated separately to ensure fair performance across the full population.

EVAL	MEAN	STD	
Two or more races	868.91	13.51	
Some other race alone	908.55	5.34	
Asian alone	908.46	7.78	
Black alone	913.78	3.67	
White alone	977.95	2.10	

Methods for exploring utility

- If different subgroups in the population have significantly conflicting patterns of correlations between their features, it can be difficult for the generative model to capture all groups adequately.
- When large discrepancies between the ground truth and synthetic data distributions are identified, further investigation including geographic-based evaluations and exploration of model dependencies can help diagnose the problem.

	Variable	Description	Weight
Top Race Predictors–PUMA 3529	POBP HISP ANC1P O OIP	Place of Birth Hispanic Origin Ancestry 1 Non-wage Income	0.283 0.217 0.188 0.109
	ANC2P OCCP	Ancestry 2 Occupation	0.057 0.021
	LANP	Language	0.021
	JWAP	Commute Arrival	0.015
	PRIVCOV	Priv. Health Ins.	0.013
_	Variable	Description	Weight
_		Description Ancestry 1	Weight 0.489
_	ANC1P	<u> </u>	
_	ANC1P HISP	Ancestry 1	0.489
Top Race Predictors–Overall IL	ANC1P HISP POVPIP	Ancestry 1 Hispanic Origin	0.489 0.139
Top Race Predictors-Overall IL	ANC1P HISP POVPIP ANC2P POBP	Ancestry 1 Hispanic Origin Income/Poverty Ratio	0.489 0.139 0.087
Top Race Predictors–Overall IL	ANC1P HISP POVPIP ANC2P POBP OCCP	Ancestry 1 Hispanic Origin Income/Poverty Ratio Ancestry 2	0.489 0.139 0.087 0.071 0.041 0.028
Top Race Predictors-Overall IL	ANC1P HISP POVPIP ANC2P POBP OCCP	Ancestry 1 Hispanic Origin Income/Poverty Ratio Ancestry 2 Place of Birth	0.489 0.139 0.087 0.071 0.041
Top Race Predictors–Overall IL	ANC1P HISP POVPIP ANC2P POBP OCCP JWAP	Ancestry 1 Hispanic Origin Income/Poverty Ratio Ancestry 2 Place of Birth Occupation	0.489 0.139 0.087 0.071 0.041 0.028

Methods for improving utility

When issues are identified, there are a variety of steps that can be taken to improve synthesis quality, depending on the synthesis approach.

- Synthesis can be partitioned so that distinct subgroups in the population are synthesized separately to better preserve their unique distributions.
- Variables can be redefined or post-processed to satisfy edit constraints. If a variable in the schema is computed deterministically from other variables, it should be recalculated rather than synthesized.
- Structural zeros/null values can be synthesized independently in a 2-step process: First synthesize a binary variable **IsNull_VarA**, then synthesize **Val_VarA**. This allows the model to better fit and reproduce these patterns.
- Adding supplementary variables (such as the median feature value in a given geographical area) can make important information more accessible and improve model performance.

Event #931050

We are looking for feedback on the guide

- Meeting on Statistical Data Confidentiality, December 2, 2021
- Data Challenge test drive the guide!
 - Dates: January 24 to January 28, 2022
 - Problem: you are a NSO that is facing one of 4
 disclosure problems. You must generate synthetic data
 and assess if it meets the disclosure and utility
 standards to release it.
 - You will be provided with an 'original' data file
 - Experts will be on hand to help.
- Registration now open: https://indico.un.org/event/1000359/
- Encourage your NSOs and networks to participate!

Slido exit poll part 2

Event #931050