Migration based on the observed behaviour of travellers

New Zealand’s approach to administrative data driven migration estimates
Conditions conducive to measuring outcomes

• Awareness of intentions limitations

• Changing nature of migration
 • Temporary visas
 • Migrants making multiple border crossings

• Ability to link arrival and departure records
 • Availability of linking variables
 • Linking methodology/techniques have improved
 • IT grunt

• Growing volume of border crossings

• Proposed removal of the departure card
How outcomes-based approaches work

• Identify unique individuals in the border-crossing data
• Construct a ‘travel history’ for each person
 • Link together all arrivals and departures for the same person
• Apply a classification rule
 • Classify each arrival/departure as a ‘migrant’ vs ‘not migrant’
• 12/16 - month rule is one outcomes-based approach
The 12/16 month rule
(Or technically the 365/487 day rule)

Direction?

Person is resident before crossing?

Arrival

Yes

Remains resident; crossing not migration

No

Spends 12+ of next 16 months in country?

Yes

Becomes resident; crossing is in-migration

No

Remains non-resident; crossing not migration

Departure

Yes

Spends 12+ of next 16 months outside country?

Yes

No longer resident; crossing is out-migration

No

Remains resident; crossing not migration

No

Remains non-resident; crossing not migration
Overcoming the loss of timeliness via prediction

- New Zealand customers cannot wait over 16 months for migration measures
 - They expect results about 1 month after the reference period
- To apply the 12/16 rule to a border crossing, we potentially have to wait 16 months after a border crossing has occurred
- Of all border-crossings (pre-COVID) only around 1 - 2% were migrant crossings
- Can we predict the classifications these crossings?
Unit record modelling with machine learning

- Machine learning approach to border classification – at unit record level
- A gradient-boosted classifier is used, specifically implemented through XGBoost
 - An implementation of boosted trees
 - The algorithm is known to perform well in classification problems
- For each unresolved crossing, classifier estimates probability that it’s a migrant crossing
- Integrates some model uncertainty – by running model on several subsamples of training data
Machine learning model features

Attributes from admin data

Properties of the classification rule (12/16 - rule)

Known migration outcomes

Features to predict migration outcomes

- Days observed: Days passed since the border-crossing occurred
- Days in country: Days in New Zealand since border-crossing
- Count future total: Border-crossings after the one to be classified
- Direction, age, sex, visa type, citizenship region, month of the year
Example of overall estimate performance
A few concluding remarks & customer/user perspective

- New Zealand uses daily border-crossing data to measure migration
- An outcomes based method, which relies on time spent in/out of the country is used – purely a population concept
 - Independent of legal status, visa type, or other such considerations
 - Independent of the intentions of the traveller – it’s simply based on their behaviour
- NZ Customers require timely (around 1 month elapsed time) migration estimates – we use a machine learning model to provide this
Thank you, questions?