Informal document **GRVA-11-14** 11th GRVA, 27 Sept. - 1 Oct. 2021 Provisional agenda item 4(e)

ISO TC22-SC32-WG13 ISO TS 5083

- Strategy and objectives
- Roadmap and timeline
- Safety goals and principles
- Safety by design and verification & validation
- Current work topics
- Summary

Road Vehicles – Safety for automated driving systems – Design, verification and validation

UNECE WP.29 GRVA 11th session | ISO TS 5083 Web Meeting | 28-Sep-2021

ISO TS 5083 – SAFETY FOR AUTOMATED DRIVING SYSTEMS. STRATEGY AND OBJECTIVES.

Overarching standard for safety for automated driving systems **linking all standards** addressing special automated driving related topics

Gives big picture by an holistic safety approach for automated driving systems of SAE Level 3 and 4

Application-specific standardization based on generic underlying standards like ISO 26262 (functional safety), ISO 21448 (SOTIF), ISO 21434 (automotive cybersecurity)

Shall be suitable as a basis for authorities and regulatory acts.

Standardization of the state-of-the art in parallel with the product development

Proceed from an ISO/TR to finally release an ISO Standard.

1. ISO TR 4804, in Dec. 2020

Target was to convert Safety First White Paper into an ISO/TR creating an early 1st edition to worldwide address this field by an ISO standardization activity. Avoid major changes in this step to **be fast**.

2. ISO TS 5083 by Mid 2023

Go for necessary enhancements and extensions to cover scope in width and depth.

3. Continue work to proceed towards ISO IS standard

Mature worldwide industry consensus and state-of-the-art based on global product releases.

ISO TS 5083 – SAFETY FOR AUTOMATED DRIVING SYSTEMS. ISO TC22/SC32/WG13 EVOLVES ISO TR 4804 INTO ISO TS 5083.

• Over **120 experts** from **14 countries** are registered at ISO TC22/SC32/WG13.

- ISO TC22/SC32/WG13 evolves ISO TR 4804 into ISO TS 5083.
- Project is intended to run in a 24 month schedule, i.e. expected release date of TS 5083 is by mid 2023

ISO TS 5083 – SAFETY FOR AUTOMATED DRIVING SYSTEMS. TIMELINE.

Þ	Release of White Paper "Safety First"	02-Jul-19	n/a	International release of White Paper as free download from all partners. Pre-work for ISO standardization
þ	Project approval ISO TR 4804	30-Dec-19	ISO	ISO project formally approved to start.
¢	Release of ISO TR 4804	07-Dec-20	Genève, ISO	ISO TR 4804 available at <u>www.iso.org</u>
Þ	Project approval ISO TS 5083	06-Dec-20	Genève, ISO	ISO project formally approved by P-members of TC22. New TC22 / SC32 / WG 13 founded to host project.
þ	WG13 Kick-off meeting	16-Feb-21	Web meeting, ISO	Founding of intl. expert team, clarification on operational issues, collection of topics for TS 5083
þ	WG13 plenary and sub-team meetings	2021/2022	Web meetings	Work on content of ISO TS 5083
\diamond	Planned Release of ISO TS 5083	Mid 23	Genève, ISO	Expected release date of ISO TS 5083

ISO TS 5083 – SAFETY FOR AUTOMATED DRIVING SYSTEMS. ROADMAP.

	Principle schedule of WG13 plenary and sub-team meetings	Meeting dates:	
ent	 2nd WG13 Meeting Understand proposals on cluster and topics 	2 nd WG13 plenary	2021-02-16
Alignme	 3rd/ 4th WG13 Meeting and sub-team workshops Align and detail proposals incl. initial drafting of text Decide on proposals for TS 5083 	3 rd WG13 plenary	2021-07-27/28/29
phase		4 th WG13 plenary	2021-Nov.
Integration	 5th/ 6th WG13 Meeting and sub-team workshops Drafting of text and integration into TS 5083 Create baseline after 6th meeting 	5 th WG13 plenary	2022-Mar.
phase		6 th WG13 plenary	2022-Jun.
Review	 Official commenting via SC32 in ISO comments sheet 7th/ 8th WG13 Meeting Review and conclusion of comments 	7 th WG13 plenary	2022 late Sep early Oct.
phase		8 th WG13 plenary	2022 Dec.

ISO TS 5083 – SAFETY FOR AUTOMATED DRIVING SYSTEMS. STRUCTURE.

ISO TS 5083 – SAFETY FOR AUTOMATED DRIVING SYSTEMS. POSITIVE RISK BALANCE AND AVOIDANCE OF UNREASONABLE RISK.

"practically possible". These judgements are made on basis of a combination of qualitative and quantitative assessments, and also on an understanding of good engineering practice and existing standards.

ISO TS 5083 – SAFETY FOR AUTOMATED DRIVING SYSTEMS. PRINCIPALS.

Groups of principals of safety and cybersecurity					
PSC-01 Cybersecurity					
PSC-02 Data Recording	Automated Vehicle and				
PSC-03 Passive Safety	Related Aspects				
PSC-04 Safety Assessment)				
PSC-05 Safe Operation					
PSC-06 Safety Layer PSC-07 Behaviour in Traffic	Automated Driving System				
PSC-08 Operational Design Domain					
PSC-09 Role of User					
PSC-10 Driver Initiated Takeover	Human Factors				
PSC-11 Vehicle Initiated Takeover Request					
PSC-12 Interdependency between Driver and Automated Driving System					

ISO TS 5083 – SAFETY FOR AUTOMATED DRIVING SYSTEMS. GENERIC ARCHITECTURE.

Traffic Rules: Worldwide and locally different traffic rules need to be taken into account.

Environment Perception Sensors: Different physical principles.

HD maps have to offer reliable map attributes.

Sensor Fusion: Combination of at least three sensor technologies (e.g. camera, lidar, radar).

Safety measures for supervised offline trained DNNs.

Integrated circuits need to fulfill Functional Safety requirements.

Complement verification & validation approaches by field monitoring.

Implementation of redundant safety channel.

ISO TS 5083 – SAFETY FOR AUTOMATED DRIVING SYSTEMS. SAFETY BY DESIGN.

Realizing Nominal and Degraded Capabilities

Fail Safe (FS): After failure the risk is small or covered by *Fail Degraded*

Fail Degraded (FD): Provide safe system for specific time until Minimal Risk Condition (MRC) is reached

ISO TS 5083 – SAFETY FOR AUTOMATED DRIVING SYSTEMS. DEEP NEURAL NETWORKS.

Define, Specify, Develop & Evaluate, and Deploy & Monitor Development Process

Modular-based system architecture recommends that machine learning algorithms are treated as a software component.

Development steps of deep neuronal networks

Each step should provide safety artifacts to support the safety case.

ISO TS 5083 – SAFETY FOR AUTOMATED DRIVING SYSTEMS. CURRENT AREAS OF WORK STRUCTURED BY CLUSTER AND TOPICS.

G01 Overarching

C01 Scope C23 Overarching

C03 Terms and definitions **C06** Principles

C02 Alignment with other related standards

C08 Reference safety life cycle

G04 Safety by design								
C10 Capabilities C12 Electric C11 MRM and MRC C		lements	C2	Safety of connected vehicles				
		C15 HD map		C04 Cybersecurity				
C16 Architecture	C22 Electrical architecture/ network design							

G03 Overall risk assessment and verification & validation

C05 Positive risk balance and avoidance of unreasonable risk

C07 Safety Case **C09** Generic structure of risk assessment

C18 Achievement of safety by fulfilled requirements

C13 Verification & validation

G07 Development examples

C17 Development examples C19 Busses and Trucks

C20 Different Level of AD systems

G06 AI / ML

C14 Artificial intelligence / machine learning

ISO TS 5083 – SAFETY FOR AUTOMATED DRIVING SYSTEMS. SUMMARY.

ISO TS 5083 can support regulations on automated driving by

- Representing an worldwide industry consensus
- Being developed in short cycles to represent state-of-art of fast evolving field of automated vehicle
- Following an holistic safety approach for automated driving systems of SAE Level 3 and 4
- Introducing approach on safety targets
 - -positive risk balance and
 - -avoidance of unreasonable risk
- Being the overarching, application specific standard covering all aspects of automated driving systems
- Linking all standards addressing dedicated automated vehicle related topics.

ISO TC22-SC32-WG13 ISO TS 5083

Thank you for your attention!

Road Vehicles – Safety for automated driving systems – Design, verification and validation

UNECE WP.29 GRVA 11th session | ISO TS 5083 Web Meeting | 28-Sep-2021