

# Draft: Modelling Carbon Neutrality –

Approach to Technology Deep Dives

02 June 2021





### Technology Deep Dives

#### **Three deep dives** under investigation:

- Carbon capture and storage (CCS) and direct air capture (DAC)
- Nuclear energy (Small Modular Reactors (SMR))
- Hydrogen pathways

#### **Objectives of deep dives:**

- Improving the model for better representation of technologies/processes
- Exploring the role of innovation (cost reduction) and new use cases in diffusion of these technologies
- Sensitivity analyses and looking into technology interplays



### Direct Air Capture (DAC) and CO2 storage

#### **Questions?**

- CO2 potential in different regions in the world
- Role of DAC in different cost development assumptions
- Role of different DAC technology configurations, based on the services they can provide
- Impact of upscaling of DAC on other technologies (e.g., integration of wind and solar)



## Four DAC designs added to MESSAGE



#### Techno-economic assessment

Source: Benjamin Mitterutzner

| Technology            | Thermal energy input                    | Operability   | Energy input |          | Economics        |                 | Water input    | Effective |
|-----------------------|-----------------------------------------|---------------|--------------|----------|------------------|-----------------|----------------|-----------|
| -                     | -                                       |               | kWh_el/t     | kWh_th/t | capex (€/tco2*a) | opex (€/tco2*a) | usage (t/tCO2) | FLh       |
| HT aqueous solution   | electrical (+battery)                   | Intermittency | 1535.0       | 0.0      | 1160.4           | 39.6            | 4.3            | 8000      |
| HT aqueous solution   | electrical                              | Base load     | 1535.0       | 0.0      | 815.0            | 30.2            | 4.3            | 8000      |
| / HT aqueous solution | natural gas                             | Base load     | 0.0          | 2450.0   | 1032.0           | 38.2            | 4.3            | 8000      |
| LT solid sorbent      | heat pump (+ heat<br>storage) + battery | Intermittency | 888.8        | 0.0      | 1272.3           | 39.2            | 0.0            | 8000      |

ClimeworksCarbon Engineering



Source: Breyer, C., Fasihi, M., & Aghahosseini, A. (2020). Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling. *Mitigation and Adaptation Strategies for Global Change*, 25(1), 43-65.



### Nuclear energy

#### **Questions?**

- Role of nuclear energy in the carbon neutrality scenario
- Possible role of small modular reactors (SMR)
  - Offering higher flexibility in operation (power balancing services)
  - Providing low-temperature heat in district heating (DH)
  - Providing high temperature process heat in the industry
  - Combination with other processes, e.g., in hydrogen production
  - Deployment rate and technological diffusion
- Potential share of SMR in each of the use cases
- Which world regions can upscale the technology faster (role of technology readiness and existing policies)



#### Hydrogen representation in MESSAGE<sub>ix</sub>





## Power-to-X in *MESSAGE*<sub>ix</sub>

