F. Земля и почва

Глава III – Состояние окружающей среды и тенденции

Николай Дронин Московский Государственный Университет 5 мая 2021 года

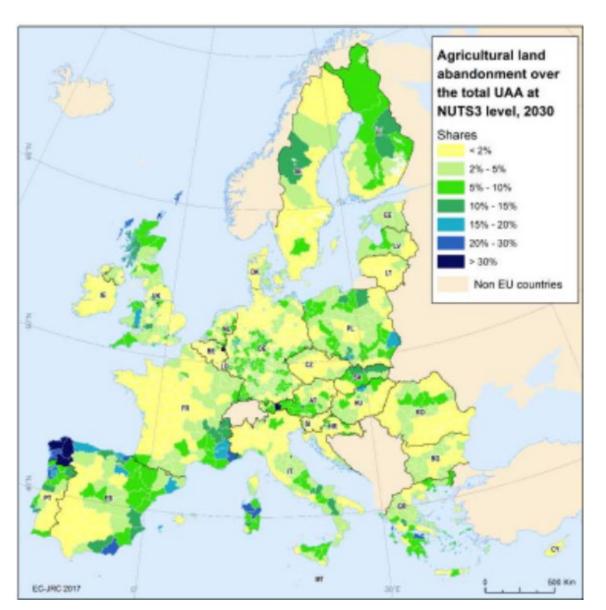
Цели презентации:

- 1. Критический обзор качества данных:
 - заброшенные пахотные земли
 - эрозия почвы
 - органическое содержание почвы
- 2. Выравнивание представления Запада (WE, NE,CE, SE) и Востока (EE и CA) в отчете об оценке

Структура:

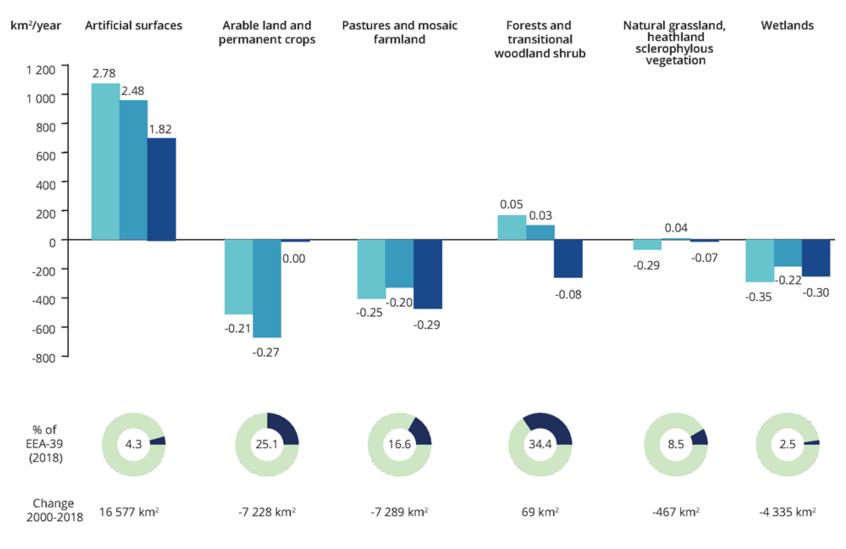
- Политические инициативы
- Показатели
- Уровень развития науки
- Внедрение:
 - Запад
 - Восток

1.1. Заброшенные пахотные земли: Политические инициативы


- Заброшенность сельскохозяйственных земель это «крупнейший процесс изменения землепользования в Европе» (Castillo и coaвт. 2020).
- Переход потребителей ЕС на более экологически чистые продукты местного производства имеет большое значение для политики ЕС по сохранению сельскохозяйственных угодий в маргинальных условиях.
- На Востоке концепция продовольственной безопасности как самодостаточности определяет твердое намерение вернуть большинство заброшенных земель в обработку почвы.

Показатели

Биофизическая пригодность земли	Структура фермы и жизнеспособность сельского хозяйства	Население и региональный контекст
Продолжительность вегетационного периода	Возраст фермеров	Низкая плотность населения
Органическое вещество почвы	Квалификация фермера	Отдалённые местности
Текстура почвы	Размер фермы	
Глубина корней	Арендная плата	
рН почвы	Арендуемая используемая площадь сельскохозяйственных угодий	
Осолоннённость и содержания натрия	Доход фермы	
Осадки	Инвестиция фермы	
Осушение п	Схема фермерского хозяйства (субсидии)	
Уклон		


Основная причина заброшенности сельскохозяйственных земель – возрастающая интенсификация сельского хозяйства на наиболее продуктивных землях и одновременное сокращение

Уровень развития науки

Испания и Польша Самые уязвимые по заброшенности земель

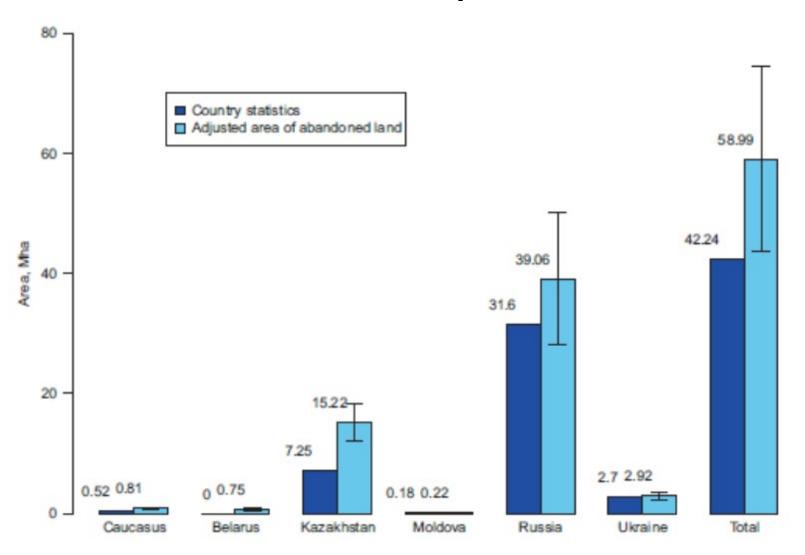
Изменение шести основных типов земного покрова в EEA-39 в период 2000-2018 гг.: «плавное развитие»

Changes in % of the value in 2000

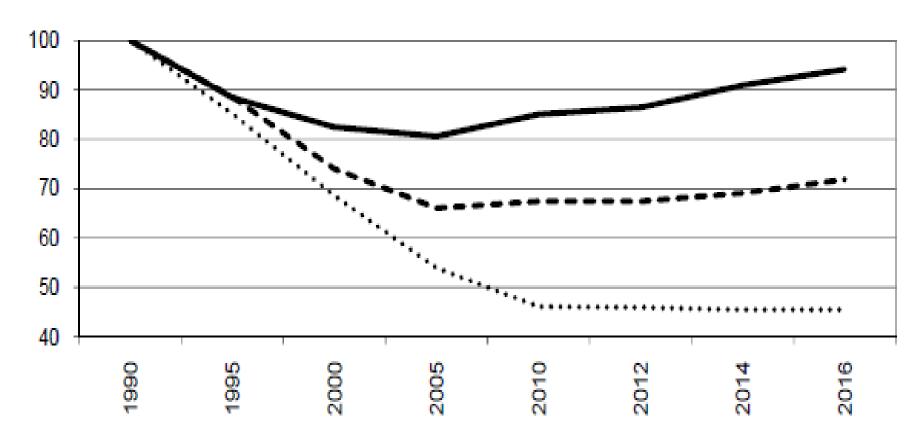
2006-2012 2012-2018

2000-2006

Перспективный прогноз для почвенного покрова EC: "плавное развитие"


Согласно прогнозам изменения землепользования на 2050 год, основанным на Панъевропейской платформе моделирования землепользования (LUMP) (Lavalle и соавт., 2013):

пахотные земли уменьшатся на 1,2%, многолетние культуры на 0,2% пастбищ на 0,6% полуприродные участки на 1% Городские площади увеличатся на 0,7% лесные площади на 2,2%.


ОИЦ (2018) прогнозирует, что количество заброшенных сельскохозяйственных земель в EC-28 может достигнуть 4,2 млн га к 2030 году в совокупном выражении (Castillo и соавт. 2018) или 2,9% от нынешнего UAA EC-27.

Самый высокий уровень заброшенности сельскохозяйственных угодий на уровне 7% (около 10 млн га) прогнозируется за счет субсидий на устранение неполадок и усиления конкуренции за землю (Lasanta и соавт., 2016).

Оценка площадей заброшенных земель в Восточной Европе и Казахстане (Lesiv и соавт. 2017)

Динамика заброшенности пахотных земель в регионах России, 1990 - 2017

Динамика посевных площадей юга европейской части России (сплошная линия), Среднего Поволжья и Южного Урала (пунктирная линия) и нечерноземной зоны Европейской части России (пунктирная линия), % к 1990 г. (Неведова 2019).

1.2. Деградация земель: Политические инициативы

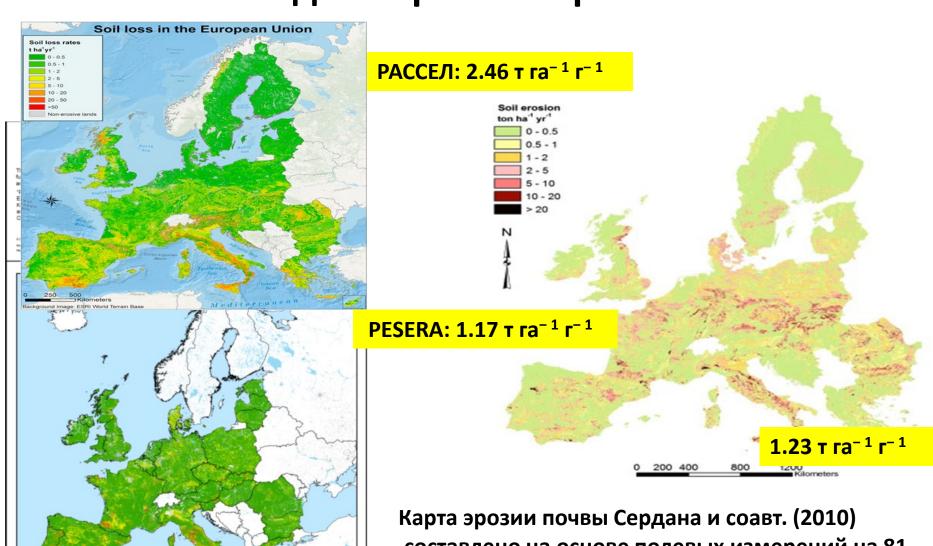
- Европейский парламент: эрозия земель «вероятно, самая серьезная экологическая проблема в Европе».
- Целью на всей территории ЕС-28 является сокращение площадей со скоростью эрозии, превышающей пороговое значение 10 тыс. га ⁻¹ год ⁻¹, по крайней мере, на 25% к 2020 г. (GEO-6).

Показатели

• Струйчатая и поверхностная эрозия - это наиболее документированный вид эрозии почв в научно-технической литературе Европы. Эрозия оврагов, пахотная эрозия, ветровая эрозия, уплотнение почвы, оползни изучены недостаточно. Для большинства из них невозможно провести общеевропейскую оценку из-за отсутствия систематических подходов и данных.

Пороги

- Предел должен быть равным скорости выветривания горных пород 1 т га⁻¹ год⁻¹ на временном интервале 50–100 лет;
- USDA «Допуск к потере почвы» (Т-фактор) «максимальная скорость потери почвы, которая может произойти при сохранении экономической устойчивости урожайности сельскохозяйственных культур» 2-10 т га⁻¹ год⁻¹ в зависимости от типа почвы;
- ОЭСР:> 11 т га⁻¹ год⁻¹ в качестве порогового значения для определения территорий, подверженных сильной эрозии;
- 12 т га⁻¹ год⁻¹ соответствует порядку эрозии, 1 мм год⁻¹ считается все еще допустимым для поддержания урожайности сельскохозяйственных культур..


Уровень развития науки

• Классическая модель Универсального уравнения смыва почвы (USLE) с двумя модификациями, такими как RUSLE и PESERA, была применена для Пан-Европы: A = R x K x LS x C x P; где A - расчетные потери почвы в тоннах на га в год; R - коэффициент осадков; K - коэффициент смываемости почвы; LS топографический фактор; С - коэффициент покрытия и управления; Р - коэффициент консервации почвы.

Ограничения моделей универсального уравнения смыва почвы

- «Лучше не принимать решения с разрешением 100 м, если рекомендуется использовать локальные измерения» (Панагос и соавт., 2015).
- «В исследованиях эрозии нет правил масштабирования »» (Нордвейк и соавт., 1998).
- Сильная предвзятость в представлении различных классов землепользования при полевом измерении эрозии почвы.
- Недостаточная доступность национальных данных о темпах эрозии почвы для калибровки моделей
- Проверка моделей дистанционным зондированием редкость.

Водная эрозия Европы

Карта эрозии почвы Сердана и соавт. (2010) составлено на основе полевых измерений на 81 участке в г.19 стран, покрывающих 2741 участков-го

Перспективный прогноз PESERA

- Для промежуточной системы земледелия, умеренная текущая урожайность (4 т га-1 год-1), средняя агротехническая тенденция (0,04 т га-1 год-1) и умеренная скорость эрозии (5 т га-1 год-1, как во Франции. и Италия) линейная экстраполяция моделирует довольно незначительную скорость потери урожая: 0,8% в 2035 г., 1,0% в 2050 г. и 1,5% в 2100 г.
- «Гипотеза о том, что эрозия представляет серьезную угрозу для сельскохозяйственного производства в Европе, вряд ли будет верной при нынешнем землепользовании и нынешних темпах эрозии» (Баккер и др., 2007).

Перспективный прогноз Рассела

• Тематическая стратегия по почвам, рассчитывающая ежегодные издержки от эрозии для стран ЕС-27, колеблется в пределах 0,7-1,4 млрд евро (JRC 2009). По результатам рыночного равновесия ежегодные затраты на эрозию почвы должны быть снижены с 1 257 миллионов евро до 295,7 миллионов евро или с 0,43 до 0,12% вклада сельского хозяйства в ВВП ЕС. Основной вывод исследования заключается в том, что «водная эрозия почвы не представляет угрозы для продовольственной безопасности в EC», но требует высоких затрат для сельскохозяйственного сектора нескольких стран, наиболее пострадавших от эрозии почвы (Paganos и соавт., 2018).

Водная эрозия в восточной Европе (модель РАССЕЛА)

- Для 1980 года модель показывает, что 436,2 млн т почвы было снято с сельскохозяйственных угодий, что составило 92,6 млн га. Это дает среднюю скорость эрозии около 4,7 т га⁻¹ год⁻¹. За 2012—2014 гг. Соответствующие показатели составляют 244,7 млн. Тонн, 61,2 млн. Га и 4,0 тыс. Га⁻¹ год⁻¹. Таким образом, средняя скорость эрозии снизилась на 15% за последние 30 лет.
- Эту динамику обусловливают два основных фактора: резкий отказ от пахотных земель после 1991 г. (21 млн га) и потепление в зимний период (Литвин и др., 2017).

Ветровая эрозия в Центральной Азии

- В Европе: недавняя количественная оценка ветровой эрозии (Borrelli и соавт., 2017) показывает, что около 7% пахотных земель ЕС имеют показатель выше 2 т га-1 год-1.
- В Центральной Азии: Средняя скорость ветровой эрозии на голых землях достигает 100 т га-1 год-1. Кустарниковые и малонаселенные земли имеют нормы 68 и 24 т га-1 год-1..
- Для сельскохозяйственных угодий уровень эрозии значительно ниже: для пастбищ 8,7, для орошаемых пахотных земель 5, и для богарных пахотных земель около 4 m га-1 год-1..
- Уровень ветровой эрозии лесных угодий составляет 0,3 т га-1 год-1.В исследовании также отмечается, что ветровая эрозия в ЦА увеличивается в 2000-2019 гг., Хотя в предыдущие десятилетия наблюдалась небольшая отрицательная тенденция (Wang et al.2020).

1.3. Запасы углерода в почве: политические инициативы

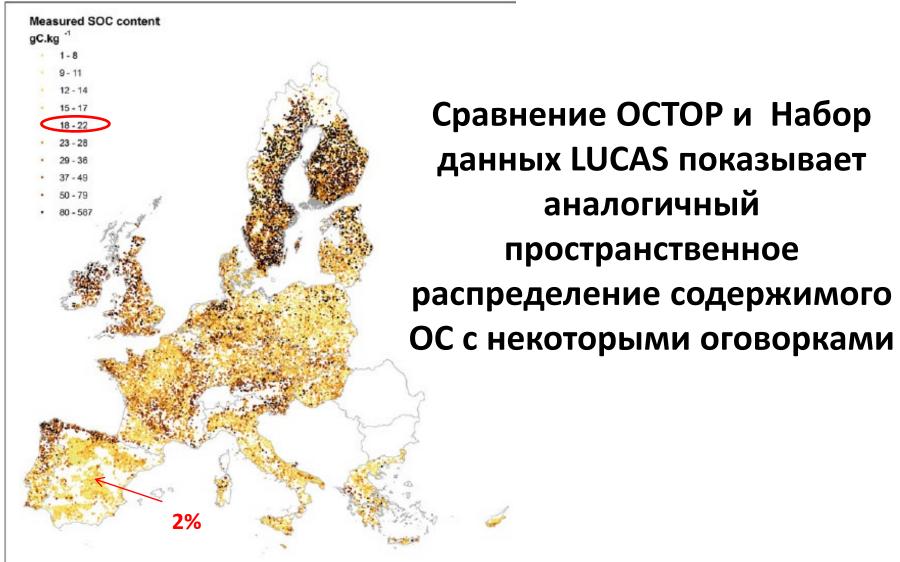
- Тематическая стратегия ЕС по защите почв (ЕС 2006) постулирует, что сокращение содержания органического вещества в почве (ПОВ) является одной из восьми угроз почвенным покровам в Европе;
- Дорожная карта EC по ресурсоэффективной Европе (EC 2011) включает цель поддерживать и повышать уровни SOC к 2020 году;
- Парижский климатический форум (2015 г.): добровольный план действий «4 на 1000 почв» для увеличения накопления углерода в сельскохозяйственных почвах на 0,4% каждый год, чтобы помочь смягчить последствия изменения климата и повысить продовольственную безопасность во всем мире..

Показатели

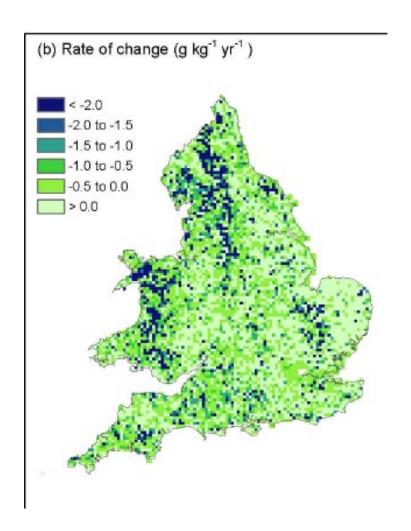
- Беспроигрышная ситуация или дилемма: сохранение большего количества ОУ в почве может подавить микробную активность, уменьшая таким образом положительный эффект накопления ОУ для сельскохозяйственных культур;
- Проект «Экологическая оценка почвы для мониторинга» (ENVASSO): использование 3 разных индикатора
- содержание органического углерода в верхнем слое почвы (%) - связано только с функцией продуктивности ПОУ - запасы органического углерода в почве (т га⁻¹) и запасы торфа (млн т)
- - для смягчения последствий изменения климата.

Пороги

- Дорожная карта Европейской комиссии по ресурсоэффективной Европе (2011 г.): уровни ПОУ не должны снижаться в целом и должны увеличиться для почв, в которых в настоящее время SOC менее 2%, к 2020 г. Эта концепция универсального критического уровня 2% может быть привлекательной для политиков благодаря своей простоте.
- Многие исследования не выявили значительного дополнительного урожая зерновых культур из-за большего количества органических веществ. Предполагается, что пропорции «свежего SOC» могут быть более важными, чем общий запас органического углерода.
- Проект ENVASSO: 3 показателя общий органический углерод, общее содержание органического азота и соотношение С: N (оптимизировано на уровне около 20)..


Уровень развития науки

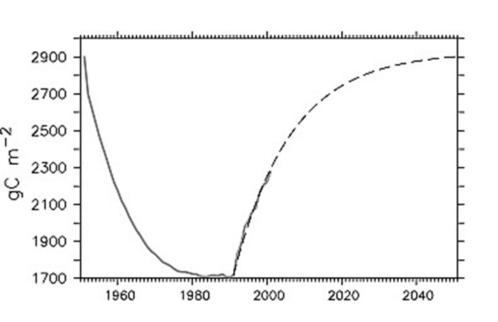
- В 2005 году карта органического углерода в верхних слоях почвы в Европе (ОСТОР) с разрешением 1 км была построена на основе уточненного правила передачи данных о педо-переносе и набора наборов данных.
- Результаты, выраженные в виде классов ОУ, были подтверждены на измеренных значениях ПОУ на более чем 12 000 участков в Англии / Уэльсе и Италии.
- По сравнению с результатами проекта PESERA: в Испании и Франции районы с низким содержанием ПОУ (<2%) соответствовали территориям, наиболее пострадавшим от эрозии земель (> 5 т га-1 год-1).


Классификация землепользования и земного покрова: (LUCAS) проект (2009)

• Первый комплексный отбор проб почвы на всей территории ЕС. Весной и летом 2009 г. в 25 странах-членах ЕС было взято около 22 000 проб почвы с использованием стандартизированного протокола. Эти образцы отправили в специальную лабораторию..

Содержание углерода в почве в Европе (проект LUCAS)

Англия и Уэльс: динамика ПОУ с 1978 по 2003 год (Bellamy et al. 2005)



- Национальная инвентаризация почв (NSI) включает измерения ПОУ (5х5 км) на 6000 участках в период с 1978 по 2003 год. Повторная выборка показывает потерю углерода:
- -0,6% в год для почв с ПОУ> 5%
- -2% в год в почвах с ПОУ> 10%
- + 0,01-0,03% в почвах с ПОУ<2%.
- Поскольку значительные потери углерода наблюдались в самых разных ландшафтах и при всех формах землепользования, предполагается связь с изменением климата.

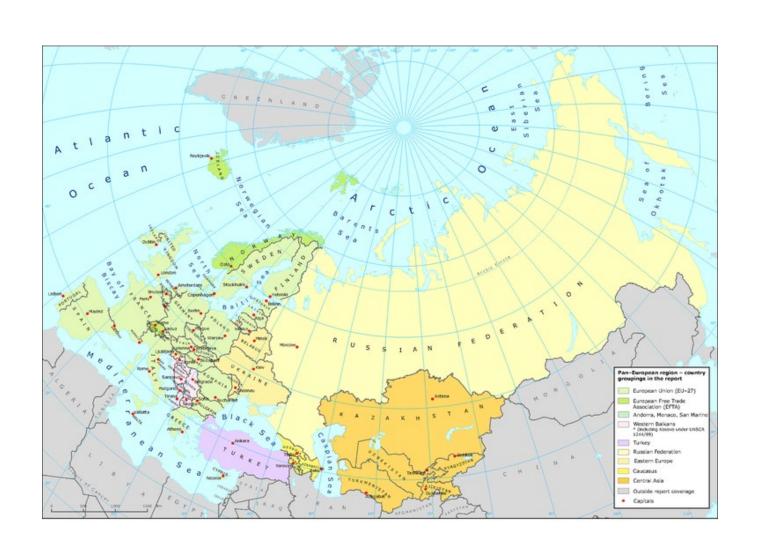
Восточная Европа и Центральная Азия

• Заброшенность пахотных земель приводит к частичному восстановлению запасов углерода в ненарушенных естественных почвах. Поправочные коэффициенты для заброшенных земель были приняты равными 0,50 для горизонтов подстилки и 0,87 для 1-метрового слоя почвы (Щепащенко и др., 2013). Поправочные коэффициенты различны для разных природных зон и экорегионов

Украина, Беларусь и европейская часть России: динамика ПОУ с 1990 по 2000 гг

Динамика ПОУ (в гКл м – 2), рассчитанная по формуле модель ORCHIDEE - STICS для степи первичная земля, которая испытала возделывание с 1950 по 1990 год и резкая консервация в 1991 г. и экстраполяция используя простую логистическую кривую для периода 2000–2050 гг.

Из-за «колоссального заброшенности земель» пахотные земли перестали быть небольшим источником атмосферного СО2, выделяя примерно 10 г углерода м⁻² в год⁻¹, на значительный сток атмосферного CO2 до 47 г С M^{-2} в год⁻¹. Чистая совокупная прибыль за 1990-2000 гг. Достигла 64 Тг С. Поглощение углерода на заброшенных землях признано «безусловно значительным» и выше, чем в лесах: 47 г С м $^{-2}$ год $^{-1}$ против 31 г С м $^{-2}$ год $^{-1}$ (Vuichard et al. 2008).


Зона вечной мерзлоты и депонирование углерода

- Почти 75% территории России находится в зоне вечной мерзлоты с почвами, обогащенными ПОВ в виде поверхностной подстилки и торфа. Эти вещества подвержены разложению при быстром потеплении климата.
- «Несмотря на многочисленные публикации, следующие этому понятию, на удивление мало данных, подтверждающих это» (Столбовой, Иванов, 2014).

Вывод:

- 1. Заброшенность земель не является основной проблемой в Панъевропейском регионе;
- 2. Эрозия почв оказывает ограниченное влияние на сельскохозяйственное производство и может быть ограничена в дальнейшем из-за распространения методов консервации в сельском хозяйстве в Пан-Европе;
- 3. Имеются некоторые свидетельства положительной тенденции депонирования углерода в почвах из-за изменения климата и заброшенности пахотных земель в Панъевропейской зоне;
- 4. Однако большинство измеримых показателей, используемых в оценках, играют только концептуальную роль в повышении осведомленности политиков о деградации земель и почв.

Спасибо за внимание!

