Task Force on Techno-Economic Issues # Emission reduction techniques in maritime shipping Nadine ALLEMAND (TFTEI technical secretariat) Special thank to Grégoire Bongrand (Citepa) and the drafting group of experts # Summary of the presentation - International legislation for abating SO₂ and NO_x - Primary reduction measures: fuel switches, slow steaming, etc. - Secondary reduction measures: SO₂ scrubbers, NO_x EGR and SCR and PM filters - Summary table of reduction efficiencies and costs # **Regulation: Marpol Convention Annex VI** # **Primary reduction measures** #### **Switch to low-sulphur content fuel oils:** • Significant reductions of SO₂ and PM emissions, depending on sulphur content and fuel quality ## **Switch to liquefied natural gas (LNG)**: - Suppression of SO₂, high reduction of NO_x ($\sim 90\%$), PM ($\sim 98\%$), BC ($\sim 75-90\%$) - Increase of CH₄ emissions if leakage #### **Switch to water-in-fuel emulsions**: • NO_x emissions reduction (up to 50-60%), and also PM and BC emissions #### Switch to alternative fuels: biofuels, methanol: - Biofuels: CO₂ reduction, but also PM and BC emissions - Methanol: CO₂ reduction (if bio), no SO₂, and NO_x, PM and BC reductions - → But, limited availability and higher consumption (lower energy content) # Slow steaming: reducing the sailing speed to save fuel • Reduction of all emissions except CO, but limits about delivery efficiency # **Secondary reduction measures** ### **Exhaust Gas Recirculation (EGR)**: - Recirculating gases \rightarrow reduction of temperature/O₂ content - Significant reductions of NO_x emissions (~25-80%), as well as PM and BC as the gases are cleaned before recirculating ### **Selective Catalytic Reduction (SCR):** - Injection of ammonia (NH₃) solution to neutralize NO_x into N₂ and H₂O - Great reduction of NO_x (~ 70-95%), and slightly BC too but risk of NH_3 leakage - Reductions of PM, VOC and CO if oxidation catalyst installed (with "clean" fuels) ### **Diesel particulate filters (DPF)**: • Porous ceramic substrate to trap particles: PM (~45-92%) and BC (~70-90%) # **Scrubbers**: dry or wet (open-loop, closed-loop or hybrid) - Chemical reaction with alkaline products to neutralize SO₂ - Important reduction of SO_2 (~ 90-98%), PM (~70-90%) and BC (~25-70%) - Limits: potential impact of seawater release for open-loop system + storage space for both - → Drawbacks for secondary measures: extra energy required + installation costs # Summary table of reductions and costs | | | | | | | Investments | | |---------------------------------------|------------------------|--------|--------|------------------|--------------|--------------|--| | <u>Reduction techniques:</u> | SO_2 | NO_x | PM | BC | fuel penalty | costs (€/kW) | Operation & maintenance costs | | Primary measures: | | | | | | | | | - Switch to low sulphur fuels | up to 97% ¹ | - | 60-90% | 30-80% | - | - | 88-223 €/t fuel | | - Switch to LNG | 90-100% | 90% | 98% | 75-90% | - 5-10% | 219-1603 | - 43 €/t fuel (+ fuel savings) | | - Switch to water-in-fuel emulsions | - | 1-60% | 20-90% | up to 85% | + 0-2% | 11-44 | 33-271 k€/year ⁵ | | - Switch to biodiesel and biofuels | - | - | 12-37% | 38-75% | + 8-11% | - | - | | - Switch to methanol | 100% ³ | 55% | 99% | 97% ² | + 9% | - | 10-15 €/MWh | | - Slow steaming | 13-50 ⁴ % | 21-64% | 18-69% | 0-30% | - 15-50% | 71 | - 42-77% (fuel savings) ⁶ | | Secondary measures: | | | | | | | | | - Exhaust Gas Recirculation (EGR) | - | 25-80% | ı | 0-20% | + 1-2% | 36-60 | 17-25€/kW | | - Selective Catalytic Reduction (SCR) | - | 70-95% | 20-40% | - | - | 19-100 | 3-10 €/MWh | | - PM filters | - | - | 45-92% | 70-90% | + 1-2% | 16-130 | +1-4% fuel penalties | | - Scrubbers | 90-98% | - | 70-90% | 25-70% | + 0.5-3% | 100-433 | 0,7 ⁷ -12 €/MWh
(~2% of capital investments) | # Thank you very much for your attention! Questions? # **TFTEI Technical Secretariat** https://unece.org/fileadmin/DAM/env/documents/2020/AIR/WGSR/TFTEI_inf ormal doc on shipping emissions-final-december2020.pdf Liberté Égalité Fraternité