

Task Force on Techno-Economic Issues

Emission reduction techniques in maritime shipping

Nadine ALLEMAND (TFTEI technical secretariat)

Special thank to Grégoire Bongrand (Citepa) and the drafting group of experts

Summary of the presentation

- International legislation for abating SO₂ and NO_x
- Primary reduction measures: fuel switches, slow steaming, etc.
- Secondary reduction measures:
 SO₂ scrubbers, NO_x EGR and SCR and PM filters
- Summary table of reduction efficiencies and costs

Regulation: Marpol Convention Annex VI

Primary reduction measures

Switch to low-sulphur content fuel oils:

• Significant reductions of SO₂ and PM emissions, depending on sulphur content and fuel quality

Switch to liquefied natural gas (LNG):

- Suppression of SO₂, high reduction of NO_x ($\sim 90\%$), PM ($\sim 98\%$), BC ($\sim 75-90\%$)
- Increase of CH₄ emissions if leakage

Switch to water-in-fuel emulsions:

• NO_x emissions reduction (up to 50-60%), and also PM and BC emissions

Switch to alternative fuels: biofuels, methanol:

- Biofuels: CO₂ reduction, but also PM and BC emissions
- Methanol: CO₂ reduction (if bio), no SO₂, and NO_x, PM and BC reductions
- → But, limited availability and higher consumption (lower energy content)

Slow steaming: reducing the sailing speed to save fuel

• Reduction of all emissions except CO, but limits about delivery efficiency

Secondary reduction measures

Exhaust Gas Recirculation (EGR):

- Recirculating gases \rightarrow reduction of temperature/O₂ content
- Significant reductions of NO_x emissions (~25-80%), as well as PM and BC as the gases are cleaned before recirculating

Selective Catalytic Reduction (SCR):

- Injection of ammonia (NH₃) solution to neutralize NO_x into N₂ and H₂O
- Great reduction of NO_x (~ 70-95%), and slightly BC too but risk of NH_3 leakage
- Reductions of PM, VOC and CO if oxidation catalyst installed (with "clean" fuels)

Diesel particulate filters (DPF):

• Porous ceramic substrate to trap particles: PM (~45-92%) and BC (~70-90%)

Scrubbers: dry or wet (open-loop, closed-loop or hybrid)

- Chemical reaction with alkaline products to neutralize SO₂
- Important reduction of SO_2 (~ 90-98%), PM (~70-90%) and BC (~25-70%)
- Limits: potential impact of seawater release for open-loop system + storage space for both
- → Drawbacks for secondary measures: extra energy required + installation costs

Summary table of reductions and costs

						Investments	
<u>Reduction techniques:</u>	SO_2	NO_x	PM	BC	fuel penalty	costs (€/kW)	Operation & maintenance costs
Primary measures:							
- Switch to low sulphur fuels	up to 97% ¹	-	60-90%	30-80%	-	-	88-223 €/t fuel
- Switch to LNG	90-100%	90%	98%	75-90%	- 5-10%	219-1603	- 43 €/t fuel (+ fuel savings)
- Switch to water-in-fuel emulsions	-	1-60%	20-90%	up to 85%	+ 0-2%	11-44	33-271 k€/year ⁵
- Switch to biodiesel and biofuels	-	-	12-37%	38-75%	+ 8-11%	-	-
- Switch to methanol	100% ³	55%	99%	97% ²	+ 9%	-	10-15 €/MWh
- Slow steaming	13-50 ⁴ %	21-64%	18-69%	0-30%	- 15-50%	71	- 42-77% (fuel savings) ⁶
Secondary measures:							
- Exhaust Gas Recirculation (EGR)	-	25-80%	ı	0-20%	+ 1-2%	36-60	17-25€/kW
- Selective Catalytic Reduction (SCR)	-	70-95%	20-40%	-	-	19-100	3-10 €/MWh
- PM filters	-	-	45-92%	70-90%	+ 1-2%	16-130	+1-4% fuel penalties
- Scrubbers	90-98%	-	70-90%	25-70%	+ 0.5-3%	100-433	0,7 ⁷ -12 €/MWh (~2% of capital investments)

Thank you very much for your attention! Questions?

TFTEI Technical Secretariat

https://unece.org/fileadmin/DAM/env/documents/2020/AIR/WGSR/TFTEI_inf ormal doc on shipping emissions-final-december2020.pdf

Liberté Égalité Fraternité