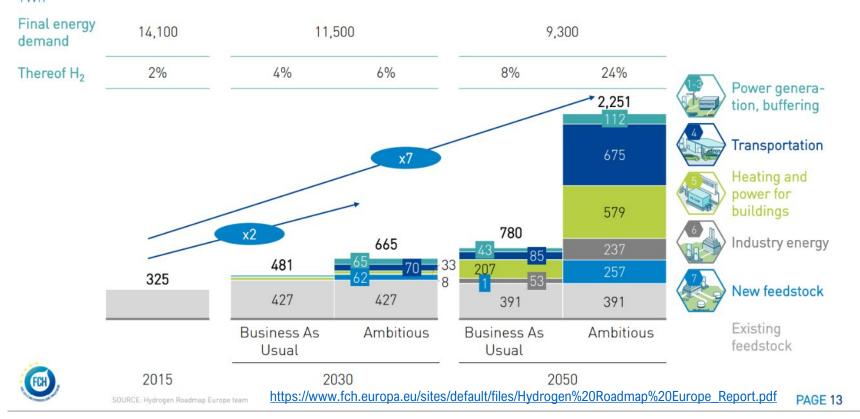
Application of UNFC – Injection Projects

RESOURCE MANAGEMENT WEEK 2021

ENABLING SUSTAINABILITY PRINCIPLES IN RESOURCE MANAGEMENT


Hydrogen

Forecast of Production & Demand

TWh

Expected demand for large scale storage

Natural Gas - FACTS

Key drivers for storage

- Heating (seasonal demand)
- Back-up power generation (peak demand)
- Arbitrage, Import dependency

Global:

- 2019 gas demand: ~3.986 bcm¹
- 2019 gas storage market size: ~483 bcm²
- Ca. 10% of demand in storage

EU:

- 2019 gas demand: ~470 bcm³
- 2019 gas storage capacity: ~105 bcm⁴
- 2019 storage levels: ~90%⁵
- Ca. 20 22% of demand in storage

Large scale underground storage and transport will be essential to meet potential demand between 2030 and 2050

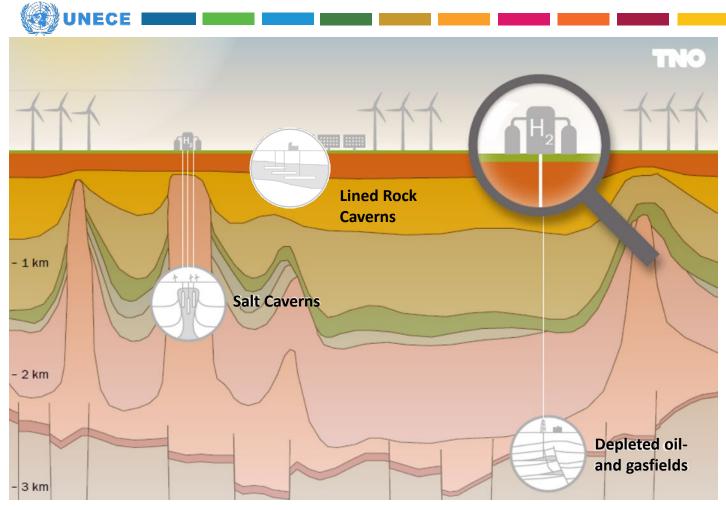
Hydrogen - OUTLOOK 2030/2050

Key drivers for storage

- Variable production renewable vs demand (peak)
- Heating (seasonal demand)?
- Arbitrage, Import dependency?

EU 2030⁶:

- Hydrogen demand 481 665 TWh
- Assumption 10 20% storage: ca. 16 bcm 44 bcm


EU 20506:

- Hydrogen demand 780 2.251 TWh
- Assumption 10 20% storage: ca. 26 bcm 150 bcm

(bcm = billion cubic metres)

- 1) IEA 2020: Natural Gas Information: Overview
- 2) Grand View Research 2020: Natural Gas Storage Market Size, Share & Trends Analysis Report
- 3) Statista 2020: Natural gas consumption in the European Union from 1998 to 2019
- 4) GIE gas storage database (dec. 2018)
- 5) EC DG Energy 2019: Quarterly Report Energy on European Gas Markets
- 6) FCH-JU 2019: Hydrogen Roadmap Europe

Geological and Technical Feasibility

Salt Caverns:

- Concept proven
- Demonstrate safety & fast cyclic storage

Gasfields / Aquifers & other stores

- Concept to be proven
- Assess geological feasibility
- Pilot/demonstration needed

Long lead times for demonstration and development (10-15 years)!

Groenenberg, R.M. et al., Large-Scale Energy Storage in Salt Caverns and Depleted Fields (LSES) – Project Findings (2020). TNO report 2020 R12006. Link

IEA Hydrogen TCP

New Task - Underground Hydrogen Storage

CONTRACTING PARTIES

1	Austria		10	Germany		19	Norway	+
2	Australia	*	11	Greece		20	Portugal	(
3	Belgium		12	Israel	❖	21	Spain	<u>(6)</u>
4	Canada	*	13	Italy		22	Sweden	+
5	China	*1	14	Japan		23	Switzerland	+
6	Denmark		15	Korea		24	UK	
7	EC	$\langle \bigcirc \rangle$	16	Lithuania		25	UNIDO	₩
8	Finland	+	17	Netherlands				
9	France		18	New Zealand	** ·			

- **IEA-TCP**: Global technology network open to IEA members and non-member countries, cross-cutting energy topics
- **Objective**: to advance the research, development and commercialization of energy technologies and related issues
- **Hydrogen TCP**: over 40 R&D&D and analysis tasks (since 1977)
- Currently 25 contracting parties and 6 sponsors
- New task: Underground Hydrogen Storage

SPONSORS

- A HYCHIC HyChico (Argentina)
- Hydrogen Council (International)
- NOW GmbH (Germany)
- **Hydrogen Council**
- RIL (Reliance Industry Limited, India)
- Shell Global Solutions (International)
- Southern Company (USA)
- Southern Company

5

IEA Hydrogen TCP

New Task - Underground Hydrogen Storage

Task proposal – Netherlands Ministry of Economic Affairs & Climate Policy **Task coordination** – TNO , **Coordination support**: Delft Technical University

- Rationale: Expected increasing importance of hydrogen as future clean fuel and large-scale storage medium for the balancing of intermittent renewable energy production, seasonal heat demand and static supply of industry feedstock
- Challenge: Development of large scale hydrogen storage in underground formations (UHS) may become critical in a decade (balancing, H2 economy & backbone):
 - Solution-mined salt caverns and porous formations are considered primary targets for UHS (proof of concept)
 - Lined rock caverns and buried vessels could provide alternatives in absence of salt caverns / gas fields / aquifers
- **Objective**: Prove technical, economic and societal viability of UHS > Accelerate pilots/demonstration and support large-scale development and commercialization of UHS (through international cooperation and information exchange)

IEA Hydrogen TCP

New Task - Underground Hydrogen Storage

Academic/Research Institutes, Laboratories, Geological surveys

Technical Feasibility

Subsurface characterization, impacts & monitoring

Technology development

Site screening, performance, classification

National / International **R&I Programmes**

Industry Pilots and Demonstration

Technology deployment

Engineering, design, risks, safety, monitoring

Planning and efficiency

System integration, economics, regulation, societal embedding & ethics

Policy support, Regulation, Energy systems & market

Application of UNFC – Injection Projects

UNFC-2009 Classes Defined by Categories as Applied to Injection Projects for the Purpose of Geological
Storage

	Injected and Stored Quantities							
	Lost Quantities ^a							
		Class	Categories					
		Class	Е	F	\mathbf{G}^{b}			
rage	Future storage by commercial injection projects	Commercial Injection Projects ^c	1	1	1, 2, 3			
Total Geological Storage	Future storage in known reservoirs by injection projects	Potentially Commercial Injection Projects ^d	2 ^e	2	1, 2, 3			
otal Geo		Non-Commercial Injection Projects ^f	3	2	1, 2, 3			
T	Storage N	3	4	1, 2, 3				
	Potential future storage in undiscovered reservoirs by injection projects	Screening Projects	3	3	4			
	Storage N	ot Feasible ^g	3	4	4			

E) Economic viability

- Hydrogen market, production
- Volatility, balancing, price fluctuations
- System integration, transport, consumers
- Merit order, LCOE, CAPEX/OPEX
- Regulatory framework, licensing
- H2 Quality & Certification

F) Technical feasibility

- Demonstrating subsurface conditions
- Safety, integrity, losses, monitoring
- Engineering concepts/design
- Portfolio screening and maturation
- Re-use, infra, dependency & timing

G) Geological confidence

- Mapping, exploration and appraisal
- Characterization and uncertainties
- Capacity & performance

Application of UNFC – Injection Projects

Existing undergrounds hydrogen storage (static storage in salt caverns)

- UK Teeside
- US Texas Clemens Dome, Moss Bluff, Spindetop

Pilot & Demonstration projects:

- RAG SunStorage (Austria gas field)
- HyChico (Argentina gas field)
- Energystock HyStock (Netherlands salt cavern)
- Storengy HyPster (France salt cavern)

Mapping, Characterisation & Screening projects:

- Various national appraisal studies
- H2020 HyUnder (potential/actors/business cases for large scale underground hydrogen storage in Europe)
- H2020 ESTMAP (European Energy Storage Mapping and Planning)
- H2020 HyStorIES (Underground storage of renewable hydrogen in depleted gas fields and other geological stores)
- Horizon-Europe call CSA Geological Services for Europe > EU database and atlas for underground storage (CCS/Heat/Energy)

	Injected and Stored Quantities						
	Lost Quantities ^a						
		Class	Categories				
		Class	E	F	G^b		
rage	Future storage by commercial injection projects	Commercial Injection Projects ^c	1	1	1, 2, 3		
Total Geological Storage	Future storage in known reservoirs by injection projects	Potentially Commercial Injection Projects ^d	2 ^e	2	1, 2, 3		
otal Geo		Non-Commercial Injection Projects ^f	3	2	1, 2, 3		
1	Storage Not Feasible ^g			4	1, 2, 3		
	Potential future storage in undiscovered reservoirs by injection projects	Screening Projects	3	3	4		
	Storage Not Feasible ^g			4	4		

Take-away messages

- Need for Large scale Underground Hydrogen Storage (UHS) demand expected with increasing share of Hydrogen in energy mix after 2030
- UHS Technical feasibility under investigation, need for pilots and demonstration
- Varying technical readiness levels for UHS in salt caverns, gas fields/aquifers and lined rock caverns
- **IEA Hydrogen TCP** aims to advance the research, demonstration and commercialization of Underground Hydrogen Storage through global research collaboration and supporting a technology network.
- Mapping, screening and characterization of potential underground storage sites in various National and European projects (including H2020, Horizon Europe)
- UNFC for Injection Projects provides a classification framework that can be linked to screening of potential sites (demonstration/upscaling), spatial planning and system/market integration of storage projects, regulation and societal embedding

Serge van Gessel

TNO – coordinator Underground Hydrogen Storage

UNECE

Date 30 I 04 I 2021, Geneva

RESOURCE MANAGEMENT WEEK 2021

ENABLING SUSTAINABILITY PRINCIPLES IN RESOURCE MANAGEMENT

