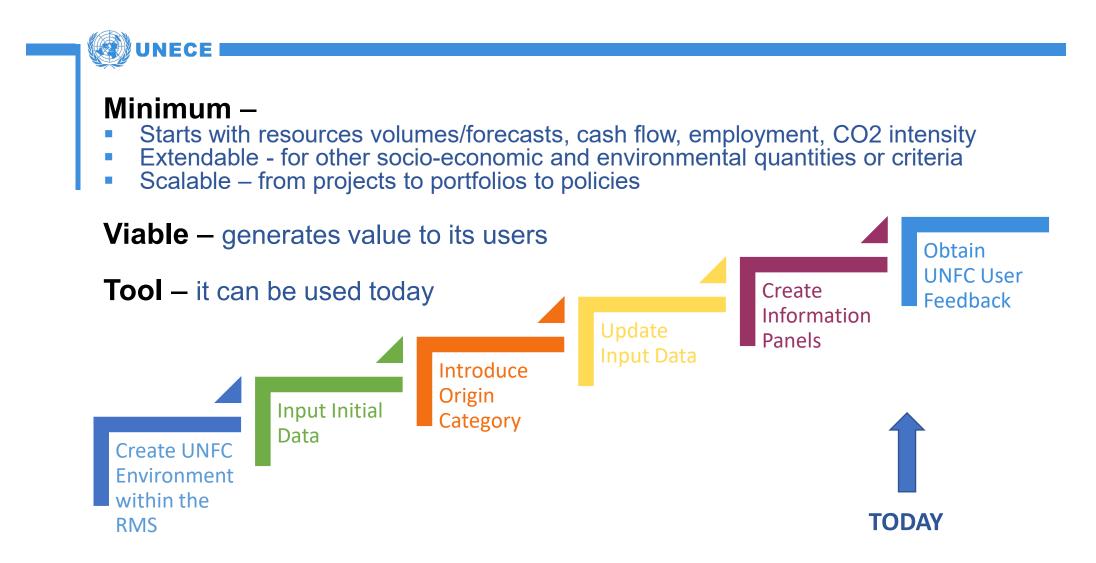
Achieving Common Information Structures for Comprehensive Quantitative Analyses

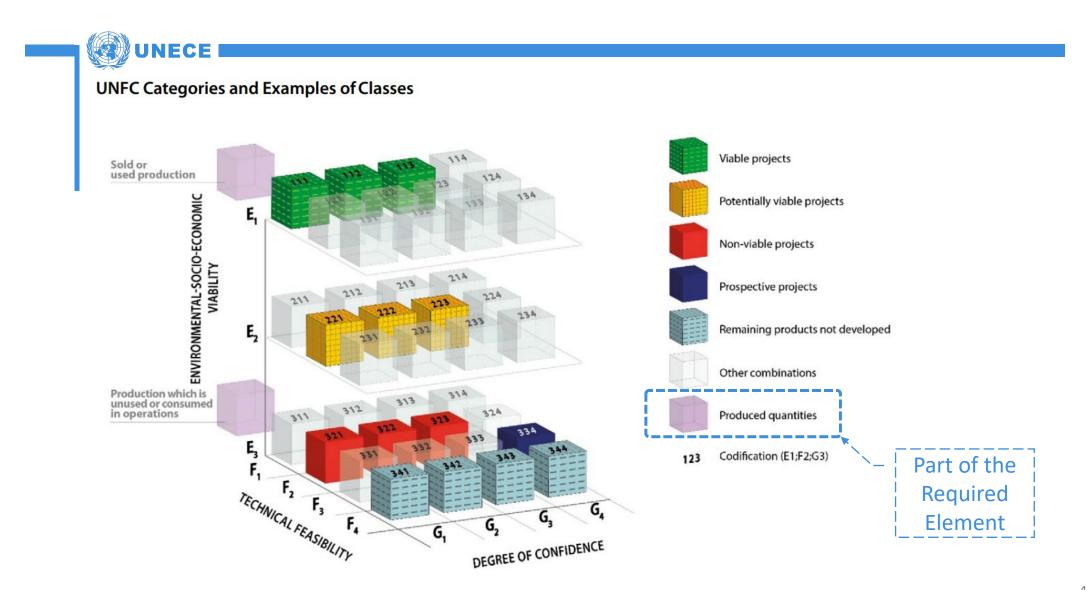
For the UN, Governments, Industry and the Capital Markets

RESOURCE MANAGEMENT WEEK 2021

ENABLING SUSTAINABILITY PRINCIPLES IN RESOURCE MANAGEMENT


Bringing the UNFC 'Adoption to Life'

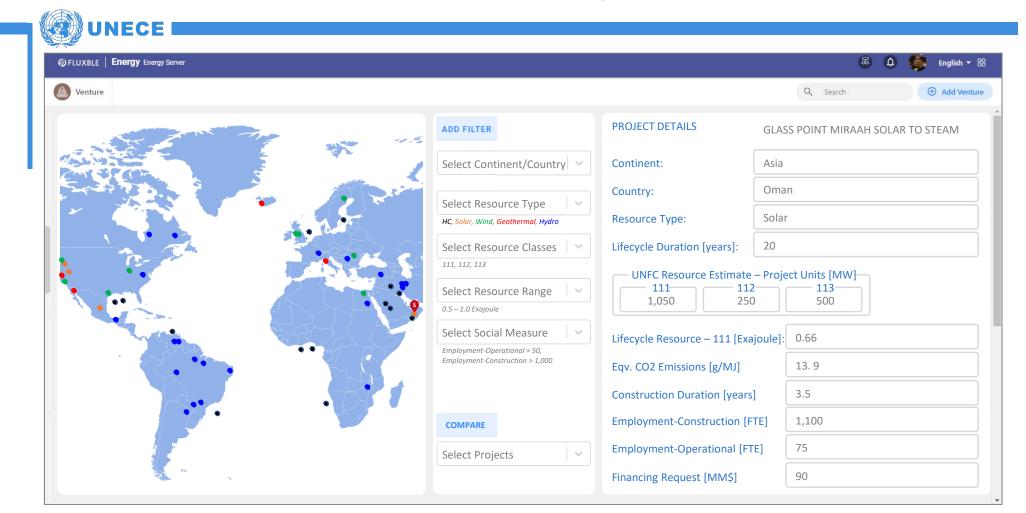
• To-date, UNFC has been <u>adopted</u> mainly for disclosure & reporting
• UNFC is also to compare & contrast across resource types:


Policies
Policies
Portfolios
Projects

- To demonstrate this capability, a **Minimum Viable Tool** is built
 - Based on an established Resource Data Management System
 - Populated with realistic project data
 - Aimed for practitioners to use and improve
 - Supporting UNFC adoption and further gaps identification
 - For well-informed decisions on sustainable resource management

Roadmap to the Minimum Viable Tool

UNFC Categories in 3D

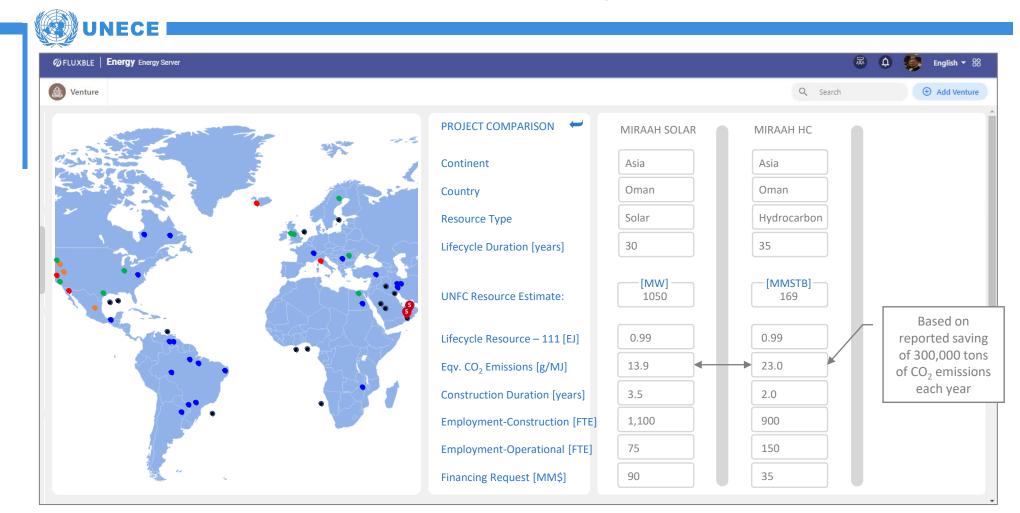

Resource Categories – Flattened in 2D

Opening and Closing Balance of Resource Volumes

	HYDROCARBON		CLOSING BALANCE													CLOSING BALANCE																		
1	RESOURC	OURCES		111	112 113 221 222 223 321 322 323 334 341 342 343 344					E	EMPLOYMENT [FTE/year]			111	112	113	221	222	223	321	322	323	334	341	342	34								
	[*10 ⁶ m ³]	1,665	370	96	116	188	75	89	20	4	9	91	6,847	1,23	9 1,627	535		[i i i j year]			2,90	8 756	915	1,098	287	603	156	33	73	715			
	Np	1,641	1,641													_	- -		Np															
	111	402	25	351										26	~		_	,	111	3,158	194	2,76	0		Г		-01	ric	ora	tin	a			
	112	99			94										5	<u> </u>	li -		112	777			737			vei	.ei		Ла	u	g			
	113	152				113										39			113	1,193				886										
	221	96					96												221	754					754									
	222	24						24										- 	222	189						189								
	223	48							48									LANCE	223	379							379							
	321	20								18				2				OPENING BALANCE	321	157								141						
	322	5									4				1			OPENI	322	38			•						30					
	323	9										8				1			323	74			IVI	ati	irir	ng				66				
	334	69											49				20		334 539	539										382				
	341	6,576					48							6,528					341															
	342	1,200						39							1,16	1			342															
	343	1,440							12							1,428	3		343															
	344	338															338		344															
Re۱	visions																	Rev	visions															
Tra	Insfers			19	2	4	44	12	28	2	0	1	35	291	72	159	177	Tra	insfers			148	19	29	344	98	224	15	4	7	278			

Dashboard

Projects Overview & Details

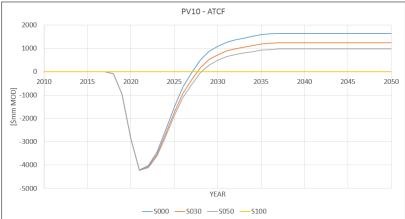

Dashboard

Compare & Contrast Projects

Dashboard

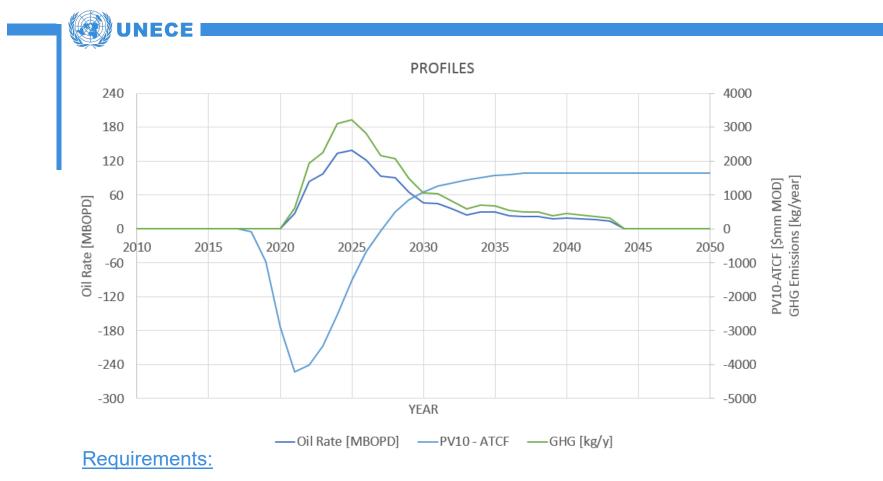
Solar to Hydrocarbon Comparison

Dashboard Forecasts


Testing Policies

Sensitivities on Example Project with No CO2-Tax, \$30/t, \$50/t, \$100/t CO2

Ø FLUXBLE │ Energy Energy Server										B 🖉 🕥	English 👻 🛞
투 Economics 🔲 Cases 🕒 Scenario	S										Ξ
Cases Parameters Fiscal Terms	Q search										₫ ⊗ ≣
Q Search Project +	A Key Metrics Upstream		n, Net Share]	DPI 10%	IRR [%]	Total Production mmboe		S/boe RT]	Payout Time [MOD]	Max. Exposure [MOD, Net	COP
UNFC	opstream	ATCF NPV0	ATCF NPV10			miniboe	0%	10%		Share]	
= 08 Mar 2021 - 5:44 AM	Total Project S000_UC1	8469	1646	0.315	15.971	406	29.845	15.104	7.132	2335	2037.000
S000_UC102A											
S030_UC102A	Total Project S030_UC1	7548	1239	0.237	14.619	406	31.920	15.903	7.355	2335	2037.000
S050_UC102A	Total Project S050_UC1	6934	968	0.185	13.671	406	33.304	16.437	7.518	2335	2037.000
S100_UC102A						0.1.8.2					
- UNFC_UC102A_HC	Total Project S100_UC1	0.000	0.01	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
08 Dec 2020 - 10:53 AM	4										


Example indicates project at \$100/t CO2 tax is impaired

JECE

10

Requirements for Testing Policies

- Production profile for each resource category
- Cashflow profile for the project;
- GHG profile calculation in line with agreed sustainability reporting standard

Learnings from Early Adoption

UNECE

- 3D representation are illegible; **2D representation work** well
- Reporting requirements to cover production and (non-)sales volumes, revisions, transfers, discoveries and extensions
- Single reporting standard set needed for
 - Carbon intensity
 - Financial reporting
 - Local/in-country employment
 - Extensible to other quantities like anthropogenic, geothermal, CCUS
- International Centers of Excellence
 - For learning by doing
 - Sandbox for practitioners
- Ready for Adopters with project/portfolio data

Conclusion

UNECE

UNFC to compare & contrast projects across resource types:

- Policies
 Portfolios
 Projects
 Prosperity
- Scalable Projects, Assets, Entity, Jurisdiction, Trans-jurisdictional Entities
- Minimum Viable Tools exist to build trusted data systems
- Double-Materiality assessments can become data-driven, dynamic, and context-driven, using a wider scope of data
- UNFC becomes a "negotiation" tool for
 - "Balanced and integrated resource management"
 - Resolving conflict and
 - Create the win-win-win for People, Planet & Prosperity
- Time to adopt the UNFC
 - For well-informed decisions on sustainable resource management

Thank you!

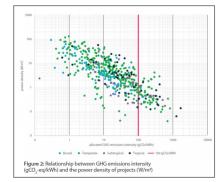
And thanks to TARGET ENERGY SOLUTIONS LTD For providing the minimum viable tool

Matthias Hartung Executive Consultant Data & Digital UNECE 29 | 04 | 2021, Geneva

RESOURCE MANAGEMENT WEEK 2021

ENABLING SUSTAINABILITY PRINCIPLES IN RESOURCE MANAGEMENT

Contributing Factors to Eqv. CO₂ Emissions


<u>Solar</u>

- Source: <u>https://www.nrel.gov/docs/fy13osti/5</u> <u>6487.pdf</u>
- Study conducted by National Renewable Energy Laboratory (NREL)
- Study aims to provide more precise estimates of life cycle GHG emissions from PV systems
- Contributing Factors to Eqv. CO₂ Emissions:
 - Mining and fabrication of PV Panels;
 - Mining and fabrication of power lines;
 - Mining and fabrication of panel reinforced foundation;
 - Logistics of material and construction staff;
 - Potential loss of vegetation that converts CO₂ to oxygen due to space occupation and shade creation.

- **Hydrocarbon**
- Source: <u>https://www.osti.gov/pages/servlets/pur</u> <u>l/1485127</u>
- Study conducted by Stanford University •
- HC eqv. CO₂ emissions range between 3 20 g/MJ with a median of 10.3 g/MJ.
- Study focusses on the "well-to-wheels" life-cycle GHG emissions of transport fuels
- Contributing Factors to Eqv. CO₂ Emissions:
 - Mining and fabrication of concrete;
 - Mining and fabrication of steel;
 - Mining, fabrication & operation of heavy machinery;
 - Power generation requirement for operational usage;
 - Logistics of material and construction/operational staff;
 - Potential loss of vegetation that converts CO₂ to oxygen due to space occupation for access roads and facilities;
 - Impact on vegetation of potential spills;
 - Clean up efforts of potential spills.

Hydro-electric

- Source: <u>https://www.hydropower.org/greenhou</u> <u>se-gas-emissions</u>
- Based on UNESCO G-res tool (life-cycle)
- Contributing Factors to Eqv. CO₂ Emissions:
 - Mining and fabrication of concrete;
 - Mining and fabrication of reinforcement steel;
 - Mining, Fabrication & operation of heavy machinery;
 - Decay of submerged vegetation
 - Loss of vegetation that converts CO₂ to oxygen.

