

National Forest Inventory - Tool for Decision Making

Policy Brief

FORESTS

WORKSHOP ON FOREST MONITORING AND RESTORATION IN THE CAUCASUS AND CENTRAL ASIA

9 DECEMBER 2020, ONLINE

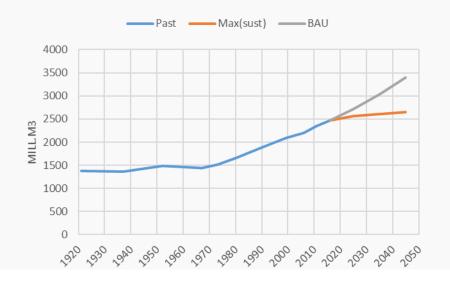
Introduction

VFI

- Forests are vital for human life and provide numerous ecosystem services
- Forests are resilient systems, but the condition of forests changes due to our land use practices, forestry operations, climate change and abrupt climatic events
- To make informed decisions on the maintenance and enhancement of the multiple forest functions we need up-to-date, reliable and relevant information on the state of forests.
 - National Forest Inventories NFIs are cost efficient systems for such information

The core elements of NFI

- **Statistics**
 - Sampling = measuring objectively selected objects rather than the whole population
- **Exact nomenclature**
 - Definition for all concepts, variables and classifications applied in the work: what is a tree/forest/forest type/FAWS etc.
- Measurement protocols
 - Guidance and documentation for correct measurements to avoid bias and unnecessary variance
- Modeling
 - From measurable varieables (e.g. stem diameter) to variables of interest (e.g. volume or biomass of growing stock)


Scenario modeling with NFI data

FORESTS

- Scenario analyses = Analyzing future development alternatives
- Necessary information
 - Current state: forest area and growing stock by forest types, age structure,...
 - Models for increment, mortality and cutting practices

 Example: Past and modeled development of forests in Finland in two alternative scenarios

Institutionalizing NFI

- Legal basis, mandate to access all land: public, private, protected
- Stable budget for the whole cycle + future monitoring
- Available specialists on
 - Statisticis
 - Mathematical computing
 - Data management
 - Field work
- Modern technology and tools for
 - Navigation
 - Measurements
 - Information sharing

NFI and Management Planning Inventories

- NFI for
 - Country & regional statistics and monitoring, scenario analyses
 - Must avoid bias and need to know the reliability to guarantee correct policy analyses
- Management planning for individual forest owners and forest stands/compartments
 - Management decisions at stand compartment level: data need to be reliable for every stand where managemen options are considered
 - Bias can be accepted if reliability is good (low variance) at stand level
 - Information need may vary according to owner preferences
- With current technologies combining the two is not cost-efficient
 - This may change as digitalization proceeds

International aspects

- Several international statistics and processes need NFI
 - Global FRA and Pan-European reporting of sustainable forest management, FAO & UNECE
 - Forest Europe C&I for sustainable forest management
 - UNFCCC
 - LULUCF regulation
- The European NFIs have voluntary network for harmonizing European forest data and for promoting use of NFI data in decision making

Further Information

- FAO 2017. Voluntary guidelines on national forest monitoring,
 ISBN 978-92-5-109619-2. http://www.fao.org/3/a-i6767e.pdf
- Vidal C., Alberdi I., Hernández, L. & Redmond J. (Eds.) (2016): National Forest Inventories - Assessment of Wood Availibility and Use. Springer International Publishing, Switzerland 2016.DOI: 10.1007/978-3-319-44015-6.
 - http://www.springer.com/fr/book/9783319440149
- European National Forest Inventories Network (ENFIN: http://enfin.info/

Thank you!

Dr. Kari T. Korhonen Principal Scientist

Natural Resources Institute Finland (Luke)

7 December 2020, Joensuu, FINLAND

