Skip to main content

References for Forest Sector Outlook Study 2020-2040

Languages and translations
English
File type1

This file provides the references quoted in the Forest Sector Outlook Study, 2020-2040:

Abatzoglou, J. T. and Williams, A. P. (2016) ‘Impact of anthropogenic climate change on wildfire across western US forests’, Proceedings of the National Academy of Sciences, 113(42), pp. 11770–11775. doi: 10.1073/pnas.1607171113.

Adámek, M. et al. (2018) ‘Drivers of forest fire occurrence in the cultural landscape of Central Europe’, Landscape Ecology, 33(11), pp. 2031–2045. doi: 10.1007/s10980-018-0712-2.

American Wood Council (2018) AWC: Tall Mass Timber code changes get final approval. Available at: https://awc.org/news/2018/12/19/awc-tall-mass-timber-code-changes-get-f… (Accessed: 16 July 2020).

Boisvert-Marsh, L., Périé, C. and de Blois, S. (2014) ‘Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes’, Ecosphere, 5(7), p. art83. doi: 10.1890/ES14-00111.1.

Bottero, A. et al. (2017) ‘Density-dependent vulnerability of forest ecosystems to drought’, Journal of Applied Ecology. Edited by H. Bugmann, 54(6), pp. 1605–1614. doi: 10.1111/1365-2664.12847.

Boulanger, Y. et al. (2013) ‘Fire regime zonation under current and future climate over eastern Canada’, Ecological Applications, 23(4), pp. 904–923. doi: 10.1890/12-0698.1.

Bowditch E et al. (2020) « What is Climate-Smart Forestry? A definition from a multinational collaborative process focused on mountain regions of Europe” Ecosystem Services, Volume 43, June 2020, 101113, https://doi.org/10.1016/j.ecoser.2020.101113.

Bradbury, M., Peterson, M. N. and Liu, J. (2014) ‘Long-term dynamics of household size and their environmental implications’, Population and Environment, 36(1), pp. 73–84. doi: 10.1007/s11111-014-0203-6.

Breneman, S. and Richardson, D. (2019) ‘Tall wood buildings and the 2021 IBC: Up to 18 stories of mass timber’, WoodWorks Wood Solution Paper, WoodWorks - Wood Products Council. Available at: https://www.woodworks.org/wp-content/uploads/wood_solution_paper-TALL-W….

Brown, R. D. and Robinson, D. A. (2011) ‘Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty’, The Cryosphere, 5(1), pp. 219–229. doi: 10.5194/tc-5-219-2011.

Brunet-Navarro, P., Jochheim, H. and Muys, B. (2017) ‘The effect of increasing lifespan and recycling rate on carbon storage in wood products from theoretical model to application for the European wood sector’, Mitigation and Adaptation Strategies for Global Change, 22(8), pp. 1193–1205. doi: 10.1007/s11027-016-9722-z.

Buermann, W. et al. (2018) ‘Widespread seasonal compensation effects of spring warming on northern plant productivity’, Nature, 562(7725), pp. 110–114. doi: 10.1038/s41586-018-0555-7.

Bugmann, H. and Bigler, C. (2011) ‘Will the CO2 fertilization effect in forests be offset by reduced tree longevity?’, Oecologia, 165(2), pp. 533–544. doi: 10.1007/s00442-010-1837-4.

Buongiorno, J. and Johnston, C. (2018) ‘Potential effects of US protectionism and trade wars on the global forest sector’, Forest Science. Oxford University Press US, 64(2), pp. 121–128.

Buongiorno, J. and Zhu, S. (2018) ‘Using the Global Forest Products Model GFPM version 2017 (with BPMPD and base year 2015)’, Staff Paper Series # 88, Department of Forest and Wildlife Ecology, University of Wisconsin, Madison Wisconsin, pp. 1–37.

Buongiorno, J. et al. (2003) The Global Forest Products Model: Structure, Estimation, and Applications. Academic Press.

Bytnerowicz, A., Omasa, K. and Paoletti, E. (2007) ‘Integrated effects of air pollution and climate change on forests: A northern hemisphere perspective’, Environmental Pollution, 147(3), pp. 438–445. doi: 10.1016/j.envpol.2006.08.028.

CABI (CAB International). 2021. Invasive Species Compendium. Datasheet on Dendrolimus superans sibiricus (Siberian silk moth). Available at: https://www.cabi.org/isc/datasheet/18371

Charru, M. et al. (2017) ‘Recent growth changes in Western European forests are driven by climate warming and structured across tree species climatic habitats’, Annals of Forest Science, 74(2), p. 33. doi: 10.1007/s13595-017-0626-1.

Chi, J. et al. (2019) ‘The carbon balance of a managed boreal landscape measured from a tall tower in northern Sweden’, Agricultural and Forest Meteorology, 274, pp. 29–41. doi: 10.1016/j.agrformet.2019.04.010.

Churkina, G. et al. (2020) ‘Buildings as a global carbon sink’, Nature Sustainability, 3(4), pp. 269–276. doi: 10.1038/s41893-019-0462-4.

Closset‐Kopp, D., Hattab, T. and Decocq, G. (2019) ‘Do drivers of forestry vehicles also drive herb layer changes (1970–2015) in a temperate forest with contrasting habitat and management conditions?’, Journal of Ecology. Edited by D. Edwards, 107(3), pp. 1439–1456. doi: 10.1111/1365-2745.13118.

Collins, M. N. et al. (2019) ‘Valorization of lignin in polymer and composite systems for advanced engineering applications – A review’, International Journal of Biological Macromolecules, 131, pp. 828–849. doi: 10.1016/j.ijbiomac.2019.03.069.

Corbett, L. J., Withey, P., Lantz, V. A., and Ochuodho, T. O. (2016) ‘The economic impact of the mountain pine beetle infestation in British Columbia: provincial estimates from a CGE analysis’, Forestry: An International Journal of Forest Research, 89(1), pp. 100–105. Doi: 10.1093/forestry/cpv042.

Dai, A. (2013) ‘Increasing drought under global warming in observations and models’, Nature Climate Change, 3(1), pp. 52–58. doi: 10.1038/nclimate1633.

Dale, V. H. et al. (2010) ‘Modeling transient response of forests to climate change’, Science of The Total Environment, 408(8), pp. 1888–1901. doi: 10.1016/j.scitotenv.2009.11.050.

de Boer, H. J. et al. (2011) ‘Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2’, Proceedings of the National Academy of Sciences, 108(10), pp. 4041–4046. doi: 10.1073/pnas.1100555108.

De Bruycker, R. et al. (2014) ‘Assessing the Potential of Crude Tall Oil for the Production of Green-Base Chemicals: An Experimental and Kinetic Modeling Study’, Industrial & Engineering Chemistry Research, 53(48), pp. 18430–18442. doi: 10.1021/ie503505f.

Delzon, S. et al. (2013) ‘Field Evidence of Colonisation by Holm Oak, at the Northern Margin of Its Distribution Range, during the Anthropocene Period’, PLoS ONE. Edited by H. YH. Chen, 8(11), p. e80443. doi: 10.1371/journal.pone.0080443.

Destatis, Statistisches Bundesamt (2019. Land- und Forstwirtschaft, Fischerei. Fortwirtschaftliche Bodennutzung - Holzeinschlagsstatistik - Fachserie 3 Reihe 3.3.1 for 2018, available at: https://www.destatis.de/GPStatistik/receive/DESerie_serie_00002641.

Destatis, Statistisches Bundesamt (2020). Land- und Forstwirtschaft, Fischerei. Fortwirtschaftliche Bodennutzung - Holzeinschlagsstatistik - Fachserie 3 Reihe 3.3.1 for 2019, available at: https://www.destatis.de/GPStatistik/receive/DESerie_serie_00002641.

Dieler, J. et al. (2017) ‘Effect of forest stand management on species composition, structural diversity, and productivity in the temperate zone of Europe’, European Journal of Forest Research, 136(4), pp. 739–766. doi: 10.1007/s10342-017-1056-1.

Dobor, L. et al. (2020) ‘Is salvage logging effectively dampening bark beetle outbreaks and preserving forest carbon stocks?’, Journal of Applied Ecology. Edited by J. Moore, 57(1), pp. 67–76. doi: 10.1111/1365-2664.13518.

Doelman, J. C. et al. (2020) ‘Afforestation for climate change mitigation: Potentials, risks and trade‐offs’, Global Change Biology, 26(3), pp. 1576–1591. doi: 10.1111/gcb.14887.

Dyderski, M. K. et al. (2018) ‘How much does climate change threaten European forest tree species distributions?’, Global Change Biology, 24(3), pp. 1150–1163. doi: 10.1111/gcb.13925.

Ekolyst (2019) Kůrovcová kalamita dosáhla loni zcela extrémního rozsahu. Prognóza na letošek není příznivá, Ekolist.cz. Available at: https://ekolist.cz/cz/publicistika/priroda/kurovcova-kalamita-dosahla-v… (Accessed: 17 July 2020).

Environment and Climate Change Canada (2016) Pan-Canadian Framework on Clean Growth and Climate Change: Canada's plan to address climate change and grow the economy. Available at: http://publications.gc.ca/collections/collection_2017/eccc/En4-294-2016….

European Commission (2013) ‘A new EU Forest Strategy: For forests and the forest-based sector’, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Brussels. Available at: https://eur-lex.europa.eu/resource.html?uri=cellar:21b27c38-21fb-11e3-8….

European Commission (2019) The European Green Deal ‘COM(2019) 640 final. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3A…

Fann, N. et al. (2018) ‘The health impacts and economic value of wildland fire episodes in the U.S.: 2008–2012’, Science of The Total Environment, 610–611, pp. 802–809. doi: 10.1016/j.scitotenv.2017.08.024.

FAO (2005). ‘State of the World’s Forests: 2005.’ Tariffs and non-tariff measures in trade of forest products. P. 108-115. Available at http://www.fao.org/3/y5574e/y5574e11.pdf. Accessed 6 October 2020.

FAO (2018) ‘The State of the World’s Forests 2018 - Forest pathways to sustainable development’. Food and Agriculture Organization of the United Nations (Licence: CC BY-NC-SA 3.0 IGO). Available at: http://www.fao.org/3/I9535EN/i9535en.pdf.

FAO (2019) ‘The State of the World’s Biodiversity for Food and Agriculture’. Edited by J. Bélanger and D. Pilling. FAO Commission on Genetic Resources for Food and Agriculture Assessments, p. 572.

FAO (2019) FAOSTAT forestry database. Forestry Production and trade. Available at: http://www.fao.org/forestry/statistics/84922/en/.

FAO (2020a) ‘Global forest resources assessment 2020: Main Report’. Food and Agricultural Organization of the United Nations. Available at: http://www.fao.org/3/ca9825en/CA9825EN.pdf

FAO (2020b) The State of the World’s Forests 2020 – Forests, biodiversity and people. Food and Agriculture Organization of the United Nations. Available at: http://www.fao.org/documents/card/en/c/ca8642en.

FAO and Plan Bleu (2018) State of Mediterranean Forests 2018. Rome and Marseille: Food and Agriculture Organization of the United Nations and Plan Bleu, Regional Activity Center of UN Environment/Mediterranean Action Plan.

FAOSTAT (2021) Forestry Production and Trade. Available at: http://www.fao.org/faostat/en/#data/FO (Accessed: 22 January 2021).

Flannigan, M. et al. (2009) ‘Impacts of climate change on fire activity and fire management in the circumboreal forest’, Global Change Biology, 15(3), pp. 549–560. doi: 10.1111/j.1365-2486.2008.01660.x.

Forest Europe (2020) Adaptation to Climate Change in Sustainable Forest Management in Europe. Zvolen: Liaison Unit Bratislava.

Freer-Smith, P. et al. (2019) Plantation forests in Europe: challenges and opportunities.From Science to Policy,9. European Forest Institute. doi: 10.36333/fs09.

Friend, A. D. et al. (2014) ‘Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO 2’, Proceedings of the National Academy of Sciences, 111(9), pp. 3280–3285. doi: 10.1073/pnas.1222477110.

Gauthier, S. et al. (2015) ‘Boreal forest health and global change’, Science, 349(6250), pp. 819–822. doi: 10.1126/science.aaa9092.

Gaylord, M. L. et al. (2013) ‘Drought predisposes piñon-juniper woodlands to insect attacks and mortality’, New Phytologist, 198(2), pp. 567–578. doi: 10.1111/nph.12174.

Gazol, A. et al. (2017) ‘Impacts of droughts on the growth resilience of Northern Hemisphere forests: Forest growth resilience to drought’, Global Ecology and Biogeography, 26(2), pp. 166–176. doi: 10.1111/geb.12526.

Geng, A et al. (2019) Assessing the Greenhouse Gas Mitigation Potential of Harvested Wood Products Substitution in China, Environmental Science & Technology 2019 53 (3), 1732-1740, DOI: 10.1021/acs.est.8b06510, Avaialble at: https://pubs.acs.org/doi/pdf/10.1021/acs.est.8b06510

Girardin, M. P. et al. (2016) ‘No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO 2 fertilization’, Proceedings of the National Academy of Sciences, 113(52), pp. E8406–E8414. doi: 10.1073/pnas.1610156113.

Gonçalves, A. C. and Sousa, A. M. (2017) ‘The Fire in the Mediterranean Region: A Case Study of Forest Fires in Portugal’, in Fuerst-Bjelis, B. (ed.) Mediterranean Identities - Environment, Society, Culture. InTech. Available at: http://www.intechopen.com/books/mediterranean-identities-environment-so….

Gregow, H. et al. (2011) ‘Combined occurrence of wind, snow loading and soil frost with implications for risks to forestry in Finland under the current and changing climatic conditions’, Silva Fennica, 45(1). doi: 10.14214/sf.30.

Griesemer, J. R. (1994) ‘Niche: Historical perspectives’, Keywords in evolutionary biology. Harvard University Press Cambridge, pp. 238–239.

Griscom, B. W. et al. (2017) ‘Natural climate solutions’, Proceedings of the National Academy of Sciences, 114(44), pp. 11645–11650. doi: 10.1073/pnas.1710465114.

Haarsma, R. J. et al. (2013) ‘More hurricanes to hit western Europe due to global warming’, Geophysical Research Letters, 40(9), pp. 1783–1788. doi: 10.1002/grl.50360.

Hale, S. E. et al. (2012) ‘Wind loading of trees: influence of tree size and competition’, European Journal of Forest Research, 131(1), pp. 203–217. doi: 10.1007/s10342-010-0448-2.

Halofsky, J. E., Peterson, D. L. and Harvey, B. J. (2020) ‘Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA’, Fire Ecology, 16(1), p. 4. doi: 10.1186/s42408-019-0062-8.

Hanewinkel, M. et al. (2013) ‘Climate change may cause severe loss in the economic value of European forest land’, Nature Climate Change, 3(3), pp. 203–207. doi: 10.1038/nclimate1687.

Hanewinkel, M. et al. (2014) ‘Converting probabilistic tree species range shift projections into meaningful classes for management’, Journal of Environmental Management, 134, pp. 153–165. doi: 10.1016/j.jenvman.2014.01.010.

Henry, H. A. L. (2008) ‘Climate change and soil freezing dynamics: historical trends and projected changes’, Climatic Change, 87(3–4), pp. 421–434. doi: 10.1007/s10584-007-9322-8.

Holmes, T. P. (1991) ‘Price and welfare effects of catastrophic forest damage from southern pine beetle epidemics’, Forest Science. Oxford University Press, 37(2), pp. 500–516.

Holmes, T.P., K.L Abt, J.P. Prestemon (2008). The Economics of Forest Disturbances: Wildfires, Storms, and Invasive Species. Springer, 420 pages.

Hungate, B. A. (2003) ‘Atmospheric Science: Nitrogen and Climate Change’, Science, 302(5650), pp. 1512–1513. doi: 10.1126/science.1091390.

Hurmekoski, E. et al. (2018) ‘Diversification of the forest industries: role of new wood-based products’, Canadian Journal of Forest Research, 48(12), pp. 1417–1432. doi: 10.1139/cjfr-2018-0116.

IEA (2020) ‘OECD Total Balance (2018) and Non-OECD Total Balance (2018), IEA Sankey Diagram. Available at: https://www.iea.org/sankey/ (Accessed: 17 February 2021).

IPBES (2019): Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. S. Díaz, J. Settele, E. S. Brondízio E.S., H. T. Ngo, M. Guèze, J. Agard, A. Arneth, P. Balvanera, K. A. Brauman, S. H. M. Butchart, K. M. A. Chan, L. A. Garibaldi, K. Ichii, J. Liu, S. M. Subramanian, G. F. Midgley, P. Miloslavich, Z. Molnár, D. Obura, A. Pfaff, S. Polasky, A. Purvis, J. Razzaque, B. Reyers, R. Roy Chowdhury, Y. J. Shin, I. J. Visseren-Hamakers, K. J. Willis, and C. N. Zayas (eds.). IPBES secretariat, Bonn, Germany. 56 pages. Available at: https://ipbes.net/sites/default/files/2020-02/ipbes_global_assessment_r….

IPCC (2000) Land Use, Land-Use Change and Forestry. Cambridge University Press, p. 375. Available at: https://www.ipcc.ch/report/land-use-land-use-change-and-forestry/.

IPCC (2013) ‘Information from Paleoclimate Archives’, in Stocker, T. F. et al. (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Available at: https://www.ipcc.ch/report/ar5/wg1/.

IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Edited by R. K. Pachauri and L. A. Meyer. World Meteorological Organization Geneva, Switzerland Available at: https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf.

IPCC (2018) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization Geneva, Switzerland. Available at: https://www.ipcc.ch/sr15/.

Irland, L. C. (2000) ‘Ice storms and forest impacts’, Science of The Total Environment, 262(3), pp. 231–242. doi: 10.1016/S0048-9697(00)00525-8.

Isaev, A. S. and Korovin, G. N. (2013) ‘Forests as a national treasure of Russia’, Contemporary Problems of Ecology, 6(7), pp. 677–682. doi: 10.1134/S1995425513070056.

Ito, A. et al. (2020) ‘Pronounced and unavoidable impacts of low-end global warming on northern high-latitude land ecosystems’, Environmental Research Letters. IOP Publishing, 15(4), p. 044006. doi: 10.1088/1748-9326/ab702b.

Jactel, H. et al. (2017) ‘Tree Diversity Drives Forest Stand Resistance to Natural Disturbances’, Current Forestry Reports, 3(3), pp. 223–243. doi: 10.1007/s40725-017-0064-1.

Jandl, R.; Ledermann, T.; Kindermann, G.; Freudenschuss, A.; Gschwantner, T.; Weiss, P. Strategies for Climate-Smart Forest Management in Austria. Forests 2018, 9, 592. https://doi.org/10.3390/f9100592

Johnston, C. et al. (2019) ‘From Source to Sink: Past Changes and Model Projections of Carbon Sequestration in the Global Forest Sector’, Journal of Forest Economics, 34(1–2), pp. 47–72. doi: 10.1561/112.00000442.

Johnston, C. M. T. and Radeloff, V. C. (2019) ‘Global mitigation potential of carbon stored in harvested wood products’, Proceedings of the National Academy of Sciences, 116(29), pp. 14526–14531. doi: 10.1073/pnas.1904231116.

Kalnbalkite, A et al. (2017) ‘Methodology for estimation of carbon dioxide storage in bioproducts’, Energy Procedia. 128, pp. 533-538.

Kärhä, K. et al. (2018) ‘Evaluation of Salvage Logging Productivity and Costs in Windthrown Norway Spruce-Dominated Forests’, Forests, 9(5), p. 280. doi: 10.3390/f9050280.

Karjalainen, T. et al. (2009) Intensification of forest management and improvement of wood harvesting in Northwest Russia. Working Papers of the Finnish Forest Research Institute 110: 151. Available at: http://urn.fi/URN:ISBN:978-951-40-2149-7.

Kauppi, P. et al. (2018) Climate smart forestry in Europe. European Forest Institute. Available at: https://www.efi.int/sites/default/files/files/publication-bank/2018/Cli….

Keskitalo, E. and Preston, B. (2019) Research Handbook on Climate Change Adaptation Policy. Edward Elgar Publishing. doi: 10.4337/9781786432520.

Kharuk, V., Im, S. & Yagunov, M. Migration of the Northern Boundary of the Siberian Silk Moth. Contemp. Probl. Ecol. 11, 26–34 (2018).

Kharuk, V., Ranson, K. and Dvinskaya, M. (2007) ‘Evidence of evergreen conifer invasion into larch dominated forests during recent decades in central Siberia’, Eurasian Journal of Forest Research. Hokkaido University Forests, EFRC, 10(2), pp. 163–171.

Kint, V. et al. (2012) ‘Radial growth change of temperate tree species in response to altered regional climate and air quality in the period 1901–2008’, Climatic Change, 115(2), pp. 343–363. doi: 10.1007/s10584-012-0465-x.

Klein Goldewijk, C. (2017) ‘Exploring future changes in land use and land condition and the impacts on food, water, climate change and biodiversity: Scenarios for the UNCCD Global Land Outlook’. Available at: https://www.pbl.nl/en/publications/exploring-future-changes-in-land-use.

Kochi, I. et al. (2010) ‘The economic cost of adverse health effects from wildfire-smoke exposure: a review’, International Journal of Wildland Fire, 19(7), p. 803. doi: 10.1071/WF09077.

Lachenbruch, B. et al. (2010) ‘Relationships of density, microfibril angle, and sound velocity with stiffness and strength in mature wood of Douglas-fir’, Canadian Journal of Forest Research, 40(1), pp. 55–64. doi: 10.1139/X09-174.

Lehtonen, I. et al. (2019) ‘Projected decrease in wintertime bearing capacity on different forest and soil types in Finland under a warming climate’, Hydrology and Earth System Sciences, 23(3), pp. 1611–1631. doi: 10.5194/hess-23-1611-2019.

Leskinen, P. et al. (2020) ‘Russian forests and climate change’, What Science Can Tell Us, 11. European Forest Institute. Available at: https://doi.org/10.36333/wsctu11.

Leskinen, P., Cardellini, G., Gonzalez-Garcia, S., Hurmekoski, E., Sathre, R., Seppälä, J., Smyth, C., Stern, T., Verkerk, P.J., 2018. Substitution effects of wood-based products in climate change mitigation. European Forest Institute. Available at: https://doi.org/10.36333/fs07

Lettner, M. et al. (2018) ‘From Wood to Resin—Identifying Sustainability Levers through Hotspotting Lignin Valorisation Pathways’, Sustainability, 10(8), p. 2745. doi: 10.3390/su10082745.

Leverkus, A. B. et al. (2018) ‘Salvage logging effects on regulating and supporting ecosystem services — a systematic map’, Canadian Journal of Forest Research, 48(9), pp. 983–1000. doi: 10.1139/cjfr-2018-0114.

Li, R. et al. (2007) ‘Potential economic impact of limiting the international trade of timber as a phytosanitary measure’, International Forestry Review. BoOne,9, pp. 514–525.

Li, S. et al. (2015) ‘Leaf gas exchange performance and the lethal water potential of five European species during drought’, Tree Physiology. Edited by R. Tognetti, p. tpv117. doi: 10.1093/treephys/tpv117.

Liang, J. et al. (2016) ‘Positive biodiversity-productivity relationship predominant in global forests’, Science, 354(6309), pp. aaf8957–aaf8957. doi: 10.1126/science.aaf8957.

Lindner, M. and Rummukainen, M. (2013) ‘Climate change and storm damage risk in European forests’, in Gardiner, B. et al. (eds) Living with storm damage to forests. European Forest Institute (What science can tell us, 3). Available at: https://www.efi.int/sites/default/files/files/publication-bank/2018/efi….

Lindner, M. et al. (2010) ‘Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems’, Forest Ecology and Management, 259(4), pp. 698–709. doi: 10.1016/j.foreco.2009.09.023.

Lindner, M. et al. (2014) ‘Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management?’, Journal of Environmental Management, 146, pp. 69–83. doi: 10.1016/j.jenvman.2014.07.030.

Lora, J. H. and Glasser, W. G. (2002) ‘Recent industrial applications of lignin: A sustainable alternative to Nonrenewable materials’, Journal of Polymers and the Environment, 10(1/2), pp. 39–48. doi: 10.1023/A:1021070006895.

Lund, S. et al. (2019) Globalization in transition: The future of trade and value chains. McKinsey Global Institute. Available at: https://www.mckinsey.com/featured-insights/innovation-and-growth/global….

Malhi, Y. et al. (2020) ‘Climate change and ecosystems: threats, opportunities and solutions’, Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1794), p. 20190104. doi: 10.1098/rstb.2019.0104.

Martin-Benito, D. et al. (2011) ‘Growth responses of West-Mediterranean Pinus nigra to climate change are modulated by competition and productivity: Past trends and future perspectives’, Forest Ecology and Management, 262(6), pp. 1030–1040. doi: 10.1016/j.foreco.2011.05.038.

McDowell, N. G. et al. (2011) ‘The interdependence of mechanisms underlying climate-driven vegetation mortality’, Trends in Ecology & Evolution, 26(10), pp. 523–532. doi: 10.1016/j.tree.2011.06.003.

McDowell, N. G. et al. (2018) ‘Predicting Chronic Climate-Driven Disturbances and Their Mitigation’, Trends in Ecology & Evolution, 33(1), pp. 15–27. doi: 10.1016/j.tree.2017.10.002.

McMahon, S. M., Parker, G. G. and Miller, D. R. (2010) ‘Evidence for a recent increase in forest growth’, Proceedings of the National Academy of Sciences, 107(8), pp. 3611–3615. doi: 10.1073/pnas.0912376107.

McNulty, S. G. (2002) ‘Hurricane impacts on US forest carbon sequestration’, Environmental Pollution, 116, pp. S17–S24. doi: 10.1016/S0269-7491(01)00242-1.

Meier, E. S. et al. (2012) ‘Climate, competition and connectivity affect future migration and ranges of European trees’, Global Ecology and Biogeography, 21(2), pp. 164–178. doi: 10.1111/j.1466-8238.2011.00669.x.

Meyer, F. D., Paulsen, J. and Körner, C. (2008) ‘Windthrow damage in Picea abies is associated with physical and chemical stem wood properties’, Trees, 22(4), pp. 463–473. doi: 10.1007/s00468-007-0206-3.

Miner, R. A. et al. (2014) ‘Forest carbon accounting considerations in US bioenergy policy’, Journal of Forestry. Oxford University Press Oxford, UK, 112(6), pp. 591–606. doi: https://doi.org/10.5849/jof.14-009.

Mitchell, H. L. (1961) A concept of intrinsic wood quality, and nondestructive methods for determining quality in standing timber. Report No. 2233. Forest Products Laboratory, Madison, Wisconsin.

Molinas-González, C. R. et al. (2017) ‘Fall rate of burnt pines across an elevational gradient in a Mediterranean mountain’, European Journal of Forest Research, 136(3), pp. 401–409. doi: 10.1007/s10342-017-1040-9.

Mori, A. S., Lertzman, K. P. and Gustafsson, L. (2017) ‘Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology’, Journal of Applied Ecology, 54(1), pp. 12–27. doi: https://doi.org/10.1111/1365-2664.12669.

Müller, M. M. et al. (2014) ‘Predicting the activity of Heterobasidion parviporum on Norway spruce in warming climate from its respiration rate at different temperatures’, Forest Pathology. Edited by R. N. Sturrock, 44(4), pp. 325–336. doi: 10.1111/efp.12104.

Nabuurs, G.-J. et al. (2014) ‘Can European forests meet the demands of the bioeconomy in the future? Wood supply alongside environmental services.’, in Nikolakis, W. and Innes, J. (eds) Forests and globalization: challenges and opportunities for sustainable development. Routledge, pp. 153–165.

Nabuurs, G.-J. et al. (2019) ‘Next-generation information to support a sustainable course for European forests’, Nature Sustainability, 2(9), pp. 815–818. doi: 10.1038/s41893-019-0374-3.

Nabuurs, G.-J., Arets, E. J. M. M. and Schelhaas, M.-J. (2017) ‘European forests show no carbon debt, only a long parity effect’, Forest Policy and Economics, 75, pp. 120–125. doi: 10.1016/j.forpol.2016.10.009.

Nagel, T. A. et al. (2016) ‘Patterns and drivers of ice storm damage in temperate forests of Central Europe’, European Journal of Forest Research, 135(3), pp. 519–530. doi: 10.1007/s10342-016-0950-2.

National Interagency Fire Center (2019) Total Wildland Fires and Acres (1926-2018). Available at: https://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.html (Accessed: 16 December 2019).

National Interagency Fire Center (2019b) Federal firefighting costs (suppression only). Available at: https://www.nifc.gov/fireInfo/fireInfo_documents/SuppCosts.pdf (Accessed: 17 December 2019).

Natural Resources Canada (2018). The state of Canadas Forests: Annual Report 2018. Canadian Forest Service. Available at: http://cfs.nrcan.gc.ca/publications?id=39336.

Natural Resources Canada (2019) National Fire Data Fire Point Data. Available at: https://cwfis.cfs.nrcan.gc.ca/datamart/download/nfdbpnt?token=a32808863… (Accessed: 17 December 2019).

Nepal, P. et al. (2013) ‘Forest carbon benefits, costs and leakage effects of carbon reserve scenarios in the United States’, Journal of Forest Economics, 19(3), pp. 286–306. doi: 10.1016/j.jfe.2013.06.001.

Nepal, P., Korhonen, J., Prestemon, J. P., et al. (2019a) ‘Projecting global planted forest area developments and the associated impacts on global forest product markets’, Journal of environmental management. Elsevier, 240, pp. 421–430.

Nepal, P. et al. (2019c) ‘Projected market competition for wood biomass between traditional products and energy: A simulated interaction of US regional, national, and global forest product markets’, Forest Science, 65(1), pp. 14–26. doi: 10.1093/forsci/fxy031.

 

Norby, R. J. et al. (2010) ‘CO2 enhancement of forest productivity constrained by limited nitrogen availability’, Proceedings of the National Academy of Sciences, 107(45), pp. 19368–19373. doi: 10.1073/pnas.1006463107.

NYDF Assessment Partners (2019) Protecting and Restoring Forests: A Story of Large Commitments yet limited Progress. Climate Focus (coordinator and editor). Available at: forestdeclaration.org.

Orazio, c. et al. (2017) Handbook for wood mobilisation in Europe. Measures for increasing wood supply from sustainably managed forests. doi: 10.13140/RG.2.2.30261.78568.

Ortiz-Ospina, E., Beltekian, D. and Roser, M. (2018) Trade and Globalization. Available at: https://ourworldindata.org/trade-and-globalization.

Päätalo, M.-L. (2000) ‘Risk of Snow Damage in Unmanaged and Managed Stands of Scots Pine, Norway Spruce and Birch’, Scandinavian Journal of Forest Research, 15(5), pp. 530–541. doi: 10.1080/028275800750173474.

Peltola, H. et al. (1999) ‘A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch’, Canadian Journal of Forest Research, 29(6), pp. 647–661. doi: 10.1139/x99-029.

Peñuelas, J. et al. (2007) ‘Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain)’, Ecography, 30(6), pp. 829–837. doi: 10.1111/j.2007.0906-7590.05247.x.

Petersen, A. K. and Solberg, B. (2005) ‘Environmental and economic impacts of substitution between wood products and alternative materials: a review of micro-level analyses from Norway and Sweden’, Forest Policy and Economics, 7(3), pp. 249–259. doi: 10.1016/S1389-9341(03)00063-7.

Pilli, R., Fiorese, G. and Grassi, G. (2015) ‘EU mitigation potential of harvested wood products’, Carbon Balance and Management, 10(1), p. 6. doi: 10.1186/s13021-015-0016-7.

Popp, A. et al. (2017) ‘Land-use futures in the shared socio-economic pathways’, Global Environmental Change, 42, pp. 331–345. doi: 10.1016/j.gloenvcha.2016.10.002.

Potter, C. and Urquhart, J. (2017) ‘Tree disease and pest epidemics in the Anthropocene: A review of the drivers, impacts and policy responses in the UK’, Forest Policy and Economics, 79, pp. 61–68. doi: 10.1016/j.forpol.2016.06.024.

Prestemon, J. P. and Holmes, T. P. (2000) ‘Timber price dynamics following a natural catastrophe’, American Journal of Agricultural Economics. Oxford University Press, 82(1), pp. 145–160.

Prestemon, J. P. and Holmes, T. P. (2004) ‘Market dynamics and optimal timber salvage after a natural catastrophe’, Forest Science. Oxford University Press, 50(4), pp. 495–511. doi: https://doi.org/10.1093/forestscience/50.4.495.

Prestemon, J. P. and Holmes, T. P. (2008) ‘Timber salvage economics’, in The Economics of Forest Disturbances: Wildfires, Storms, and Invasive Species. Springer, pp. 167–190.

Prestemon, J. P. et al. (2006) ‘Wildfire, timber salvage, and the economics of expediency’, Forest Policy and Economics, 8(3), pp. 312–322. doi: 10.1016/j.forpol.2004.07.003.

Pretzsch, H. and Biber, P. (2016) ‘Tree species mixing can increase maximum stand density’, Canadian Journal of Forest Research, 46(10), pp. 1179–1193. doi: 10.1139/cjfr-2015-0413.

Pretzsch, H. et al. (2013) ‘Species mixing and productivity of forests. Results from long-term experiments.’, Allgemeine Forst-und Jagdzeitung. JD Sauerländer’s Verlag, 184(7/8), pp. 177–196.

Pretzsch, H. et al. (2018) ‘Wood density reduced while wood volume growth accelerated in Central European forests since 1870’, Forest Ecology and Management, 429, pp. 589–616. doi: 10.1016/j.foreco.2018.07.045.

Pugh, T. A. M. et al. (2019) ‘Role of forest regrowth in global carbon sink dynamics’, Proceedings of the National Academy of Sciences, 116(10), pp. 4382–4387. doi: 10.1073/pnas.1810512116.

PwC (2017) The Long View: How will the global economic order change by 2050. PricewaterhouseCoopers (PwC). Available at: https://www.pwc.com/gx/en/world-2050/assets/pwc-the-world-in-2050-full-….

Reyer, C. et al. (2014) ‘Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide’, Annals of Forest Science, 71(2), pp. 211–225. doi: 10.1007/s13595-013-0306-8.

Reyer, C. P. O. et al. (2015) ‘Models for adaptive forest management’, Regional Environmental Change, 15(8), pp. 1483–1487. doi: 10.1007/s10113-015-0861-7.

Reyer, C. P. O. et al. (2017) ‘Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?’, Environmental Research Letters, 12(3), p. 034027. doi: 10.1088/1748-9326/aa5ef1.

Rittenhouse, C. D. and Rissman, A. R. (2015) ‘Changes in winter conditions impact forest management in north temperate forests’, Journal of Environmental Management, 149, pp. 157–167. doi: 10.1016/j.jenvman.2014.10.010.

Romanovskaya, A. A. et al. (2019) ‘Greenhouse gas fluxes and mitigation potential for managed lands in the Russian Federation’, Mitigation and Adaptation Strategies for Global Change. doi: 10.1007/s11027-019-09885-2.

Sample, V. et al. (2015) ‘Forest carbon conservation and management: Integration with sustainable forest management for multiple resource values and ecosystem services’, Pinchot Institute for Conservation, Washington, DC, USA. Available at: http://www.pinchot.org/PDFs/IntegratingForestCarbonManagement_web.pdf.

San-Miguel-Ayanz, J. and Camia, A. (2010) ‘Forest Fires’, in Mapping the impacts of natural hazards and technological accidents in Europe: An overview of the last decade. European Environment Agency, Copenhagen (EEA Technical report, 13). Available at: https://www.eea.europa.eu/publications/mapping-the-impacts-of-natural.

San-Miguel-Ayanz, J. et al. (2018) ‘Forest fires in Europe, Middle East and North Africa 2018. JRC Technical Report – European Commission.’ doi: 10.2760/1128.

Sathre, R. and O’Connor, J. (2010) ‘Meta-analysis of greenhouse gas displacement factors of wood product substitution’, Environmental Science & Policy, 13(2), pp. 104–114. doi: 10.1016/j.envsci.2009.12.005.

Schaphoff, S. et al. (2016) ‘Tamm Review: Observed and projected climate change impacts on Russia’s forests and its carbon balance’, Forest Ecology and Management, 361, pp. 432–444. doi: 10.1016/j.foreco.2015.11.043.

Schelhaas, M.-J., Nabuurs, G.-J. and Schuck, A. (2003) ‘Natural disturbances in the European forests in the 19th and 20th centuries’, Global Change Biology, 9(11), pp. 1620–1633. doi: 10.1046/j.1365-2486.2003.00684.x.

Schwab, O. et al. (2009) ‘Modeling the effect of changing market conditions on mountain pine beetle salvage harvesting and structural changes in the British Columbia forest products industry’, Canadian Journal of Forest Research, 39(10), pp. 1806–1820. doi: 10.1139/X09-099.

Secretariat of the Convention on Biological Diversity (2020) Global Biodiversity Outlook 5. Montreal. Available at: https://www.cbd.int/gbo5.

Seidl, R. and Rammer, W. (2017) ‘Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes’, Landscape Ecology, 32(7), pp. 1485–1498. doi: 10.1007/s10980-016-0396-4.

Seidl, R. et al. (2014) ‘Increasing forest disturbances in Europe and their impact on carbon storage’, Nature Climate Change, 4(9), pp. 806–810. doi: 10.1038/nclimate2318.

Seidl, R. et al. (2016) ‘Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks’, Proceedings of the National Academy of Sciences, 113(46), pp. 13075–13080. doi: 10.1073/pnas.1615263113.

Seidl, R. et al. (2017) ‘Forest disturbances under climate change’, Nature Climate Change, 7(6), pp. 395–402. doi: 10.1038/nclimate3303.

Seidl, R., Schelhaas, M.-J. and Lexer, M. J. (2011) ‘Unraveling the drivers of intensifying forest disturbance regimes in Europe’, Global Change Biology, 17(9), pp. 2842–2852. doi: 10.1111/j.1365-2486.2011.02452.x.

Settele, J., R. Scholes, R. Betts, S. Bunn, P. Leadley, D. Nepstad, J.T. Overpeck, and M.A. Taboada (2014) ‘Terrestrial and inland water systems’, Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , Cambridge University Press, , pp. 271-359.

Shvidenko, A., Nilsson, S. and Roshkov, V. (1997) ‘Possibilities for increased carbon sequestration through the implementation of rational forest management in Russia’, Water, Air, and Soil Pollution, 94(1–2), pp. 137–162. doi: 10.1007/BF02407099.

Slodicak, M. and Novak, J. (2006) ‘Silvicultural measures to increase the mechanical stability of pure secondary Norway spruce stands before conversion’, Forest Ecology and Management, 224(3), pp. 252–257. doi: 10.1016/j.foreco.2005.12.037.

Smith, P. et al. (2018) ‘Impacts on terrestrial biodiversity of moving from a 2°C to a 1.5°C target’, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2119), p. 20160456. doi: 10.1098/rsta.2016.0456.

Sohn, J. A. et al. (2012) ‘Interactions of thinning and stem height on the drought response of radial stem growth and isotopic composition of Norway spruce (Picea abies)’, Tree Physiology, 32(10), pp. 1199–1213. doi: 10.1093/treephys/tps077.

Sohn, J. A., Saha, S. and Bauhus, J. (2016) ‘Potential of forest thinning to mitigate drought stress: A meta-analysis’, Forest Ecology and Management, 380, pp. 261–273. doi: 10.1016/j.foreco.2016.07.046.

Sommerfeld, A. et al. (2018) ‘Patterns and drivers of recent disturbances across the temperate forest biome’, Nature Communications, 9(1), p. 4355. doi: 10.1038/s41467-018-06788-9.

Sousa-Silva, R. et al. (2018) ‘Tree diversity mitigates defoliation after a drought-induced tipping point’, Global Change Biology, 24(9), pp. 4304–4315. doi: 10.1111/gcb.14326.

Sperry, J. S. et al. (2019) ‘The impact of rising CO 2 and acclimation on the response of US forests to global warming’, Proceedings of the National Academy of Sciences, 116(51), pp. 25734–25744. doi: 10.1073/pnas.1913072116.

Stanturf, J. A., Goodrick, S. L. and Outcalt, K. W. (2007) ‘Disturbance and coastal forests: A strategic approach to forest management in hurricane impact zones’, Forest Ecology and Management, 250(1–2), pp. 119–135. doi: 10.1016/j.foreco.2007.03.015.

Tegel, W. et al. (2014) ‘A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress’, European Journal of Forest Research, 133(1), pp. 61–71. doi: 10.1007/s10342-013-0737-7.

Teich, M. et al. (2012) ‘Snow and weather conditions associated with avalanche releases in forests: Rare situations with decreasing trends during the last 41years’, Cold Regions Science and Technology, 83–84, pp. 77–88. doi: 10.1016/j.coldregions.2012.06.007.

Textile Exchange (2020). Preferred Fiber & Materials Market Report 2019. Available at: https://textileexchange.org/wp-content/uploads/2020/06/Textile-Exchange…

The Beck Group (2018) ‘Mass Timber Market Analysis’. The Beck Group, Forest Products Planning & Consulting, Portland, Oregon. Available at: https://www.oregon.gov/ODF/Documents/ForestBenefits/Beck-mass-timber-ma….

Thom, D. et al. (2013) ‘Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems’, Forest Ecology and Management. Elsevier, 307, pp. 293–302. doi: https://doi.org/10.1016/j.foreco.2013.07.017.

Tian, X. et al. (2016) ‘Global climate change impacts on forests and markets’, Environmental Research Letters, 11(3), p. 035011. doi: 10.1088/1748-9326/11/3/035011.

Toivio, J. et al. (2017) ‘Impacts of timber forwarding on physical properties of forest soils in southern Finland’, Forest Ecology and Management, 405, pp. 22–30. doi: 10.1016/j.foreco.2017.09.022.

Toth, D.; Maitah, M.; Maitah, K.; Jarolínová, V. (2020) The Impacts of Calamity Logging on the Development of Spruce Wood Prices in Czech Forestry. Forests 2020, 11, 283. Available at: https://www.mdpi.com/1999-4907/11/3/283.

Turco, M. et al. (2019) ‘Climate drivers of the 2017 devastating fires in Portugal’, Scientific Reports, 9(1), p. 13886. doi: 10.1038/s41598-019-50281-2.

U.S. Census Bureau (2019) Historical Households Tables, The United States Census Bureau. Available at: https://www.census.gov/data/tables/time-series/demo/families/households… (Accessed: 18 February 2020).

Ulbrich, U., Leckebusch, G. C. and Pinto, J. G. (2009) ‘Extra-tropical cyclones in the present and future climate: a review’, Theoretical and Applied Climatology, 96(1–2), pp. 117–131. doi: 10.1007/s00704-008-0083-8.

UNCTAD and World Bank (2018) The unseen impact of Non-Tariff Measures: Insights from a new database. Geneva: United Nations Conference on Trade and Development (UNCTAD) and The World Bank. Available at: https://unctad.org/system/files/official-document/ditctab2018d2_en.pdf.

UNDESA (2019a) ‘World Population Prospects 2019’. United Nations, Department of Economic and Social Affairs, Population Division (UNDESA). Available at: https://population.un.org/wpp/ (Accessed: 10 February 2020).

UNDESA (2019b) ‘World Urbanization Prospects 2018: Highlights’. United Nations, Department of Economic and Social Affairs, Population Division (UNDESA) (ST/ESA/SER.A/421).

UNECE/FAO (2011) The European Forest Sector Outlook Study II: 2010 – 2030. Available at: https://unece.org/fileadmin/DAM/timber/publications/sp-28.pdf.

UNECE/FAO (2017) ‘Forest Products Annual Market Review 2016-2017’. Available at: https://unece.org/forests/fpamr-2016-2017.

UNECE/FAO (2018) ‘Green jobs in the forest sector’. Available at: https://unece.org/forests/publications/green-jobs-forest-sector.

UNECE/FAO (2020a) ‘Trends in green jobs in the forest sector in the UNECE region’. Available at: https://unece.org/forests/publications/trends-green-jobs-forest-sector-….

UNECE/FAO (2020b) ‘Forest sector workforce in the UNECE region - Overview of the social and economic trends with impact on the forest sector’. Available at: https://unece.org/forests/publications/forest-sector-workforce-unece-re….

UNECE/FAO (2021a) ‘By-products and residues form an increasing part of wood energy consumed in the UNECE region, says UNECE/FAO’. United Nations Economic Commission for Europe (UNECE) and Food and Agriculture Organization of the United Nations (FAO). Available at: https://unece.org/climate-change/press/products-and-residues-form-incre….

United Nations (2017) ‘Resolution adopted by the Economic and Social Council on 20 April 2017’. Economic and Social Council resolution E/RES/2017/4. Available at: https://undocs.org/E/RES/2017/4

United States Department of Commerce (2019) Current dollar and ‘real’ gross domestic product. Available at: https://www.bea.gov/national/xls/gdplev.xls (Accessed: 19 July 2019).

Usbeck, T. et al. (2010) ‘Increasing storm damage to forests in Switzerland from 1858 to 2007’, Agricultural and Forest Meteorology, 150(1), pp. 47–55. doi: 10.1016/j.agrformet.2009.08.010.

Venäläinen, A. et al. (2020) ‘Climate change induces multiple risks to boreal forests and forestry in Finland: A literature review’, Global Change Biology, 26(8), pp. 4178–4196. doi: 10.1111/gcb.15183.

Verkerk P.J. (2020) Climate-Smart Forestry: the missing link. Forest Policy and Economics Volume 115, June 2020, 102164 https://doi.org/10.1016/j.forpol.2020.102164

Vose, J. M. et al. (2018) Chapter 6 : Forests. Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment, Volume II. U.S. Global Change Research Program. doi: 10.7930/NCA4.2018.CH6.

Werner, F. and Richter, K. (2007) ‘Wooden building products in comparative LCA: A literature review’, The International Journal of Life Cycle Assessment, 12(7), pp. 470–479. doi: 10.1065/lca2007.04.317.

Whitman, E., Sherren, K. and Rapaport, E. (2015) ‘Increasing daily wildfire risk in the Acadian Forest Region of Nova Scotia, Canada, under future climate change’, Regional Environmental Change, 15(7), pp. 1447–1459. doi: 10.1007/s10113-014-0698-5.

World Trade Organization (2020) Environmental requirements and market access: preventing ‘green protectionism’. Available at https://www.wto.org/english/tratop_e/envir_e/envir_req_e.htm. Accessed 6 October 2020.

Yousefpour, R., Augustynczik, A.L.D., Reyer, C.P.O. et al. Realizing Mitigation Efficiency of European Commercial Forests by Climate Smart Forestry. Sci Rep 8, 345 (2018). https://doi.org/10.1038/s41598-017-18778-w

Yu, K. et al. (2019) ‘Pervasive decreases in living vegetation carbon turnover time across forest climate zones’, Proceedings of the National Academy of Sciences, 116(49), pp. 24662–24667. doi: 10.1073/pnas.1821387116.

Zanchi, G., Pena, N. and Bird, N. (2012) ‘Is woody bioenergy carbon neutral? A comparative assessment of emissions from consumption of woody bioenergy and fossil fuel’, GCB Bioenergy, 4(6), pp. 761–772. doi: 10.1111/j.1757-1707.2011.01149.x.

Zeller, L., Liang, J. and Pretzsch, H. (2018) ‘Tree species richness enhances stand productivity while stand structure can have opposite effects, based on forest inventory data from Germany and the United States of America’, Forest Ecosystems, 5(1), p. 4. doi: 10.1186/s40663-017-0127-6.

Zhang, S.-Y. et al. (1993) ‘Modelling wood density in European oak ( Quercus petraea and Quercus robur ) and simulating the silvicultural influence’, Canadian Journal of Forest Research, 23(12), pp. 2587–2593. doi: 10.1139/x93-320.

Zhou, G. et al. (2018) ‘Drought-induced changes in root biomass largely result from altered root morphological traits: Evidence from a synthesis of global field trials: Effects of drought on root traits’, Plant, Cell & Environment, 41(11), pp. 2589–2599. doi: 10.1111/pce.13356.

Zhu, J. et al. (2015) ‘Patterns and determinants of wood physical and mechanical properties across major tree species in China’, Science China Life Sciences, 58(6), pp. 602–612. doi: 10.1007/s11427-015-4847-y