Draft Annex 4 on audit/CEL to the new UN Regulation on Automated Lane Keeping Systems (ALKS)

Annex 4

Special requirements to be applied to the functional and operational safety aspects of Automated Lane Keeping Systems (ALKS)

1. General

This annex is intended to ensure that an acceptable thorough consideration of functional and operational safety for the automated system that provides the function(s) regulated by the ALKS regulation has been performed by the manufacturer during the design and development processes and will continue to be done throughout the vehicle type lifecycle (design, development, production, field operation, decommissioning).

It covers the documentation which must be disclosed by the manufacturer to the type-approval authority or the technical Service acting on its behalf (hereafter referred as type-approval authority), for type approval purposes.

This documentation shall demonstrate that automated lane keeping system meets the performance requirements specified in this UN Regulation, that it is designed and developed to operate in such a way that it is free of unreasonable safety risks to the driver, passengers and other road users.

The type approval authority granting the approval shall verify through targeted spot checks and tests that the argumentation provided by the documentation is strong enough and that the design and processes described in documentation are actually implemented by the manufacturer.

While based on the provided documentation, evidence and process audits/product assessments carried out to the satisfaction of the type approval authority concerning this Regulation, the residual level of risk of the assessed automated lane keeping system is deemed to be acceptable for the entry into service of the vehicle type, the overall vehicle safety during the automated lane keeping system lifetime in accordance with the requirements of this regulation remains the responsibility of the manufacturer requesting the type-approval.

2. Definitions

For the purposes of this annex,
2.1. “The system” means a “Higher-Level Electronic Control” system and its electronic control system(s) that provide the automated driving function. This also includes any transmission links to or from other systems that are outside the scope of this Regulation that acts on the automated lane keeping function.

2.2. “Safety Concept” is a description of the measures designed into the system, for example within the electronic units, so that the vehicle operates in such a way that it is free of unreasonable safety risks to the driver, passengers and other road users under faults and non-fault conditions. The possibility of a fallback to partial operation or even to a back-up system for vital vehicle functions shall be a part of the safety concept.

2.3. “Electronic control system” means a combination of units, designed to co-operate in the production of the stated automated lane keeping function by electronic data processing. Such systems, commonly controlled by software, are built from discrete functional components such as sensors, electronic control units and actuators and connected by transmission links. They may include mechanical, electro-pneumatic or electro-hydraulic elements.

2.4. “Higher-Level Electronic Control” systems are those which employ processing and/or sensing provisions to realize the dynamic driving task.

2.5. “Units” are the smallest divisions of system components which will be considered in this annex, since these combinations of components will be treated as single entities for purposes of identification, analysis or replacement.

2.6. “Transmission links” are the means used for inter-connecting distributed units for the purpose of conveying signals, operating data or an energy supply. This equipment is generally electrical but may, in some part, be mechanical, pneumatic or hydraulic.

2.7. “Range of control” refers to an output variable and defines the range over which the system is likely to exercise control.

2.8. “Boundary of functional operation” defines the boundaries of the external physical limits within which the system is able to perform the dynamic driving tasks (i.e. including the transition demands and minimum risk manoeuvres).

2.9. “Operational Design Domain (ODD)” of the automated lane keeping system defines the specific operating conditions (e.g. environmental, geographic, time-of-day, traffic, infrastructure, speed range, weather and other conditions) within the boundaries fixed by this regulation under which the automated lane keeping system is designed to operate without any intervention by the driver.

2.10. “Automated Driving Function” means a function of “The System” that is capable of performing the dynamic driving task of the vehicle.

2.11. “Control strategy” means a strategy to ensure robust and safe operation of the function(s) of “The System” in response to a specific set of ambient and/or operating conditions (such as road surface condition, traffic intensity and other road users, adverse weather conditions, etc.). This may include the automatic deactivation of a function or temporary performance restrictions (e.g. a reduction in the maximum operating speed, etc.).
2.12. “Functional safety”: absence of unreasonable risks under the occurrence of hazards caused by a malfunctioning behaviour of electric/electronic systems (safety hazards resulting from system faults).

2.13. “Fault”: abnormal condition that can cause an element (system, component, software) or an item (system or combination of systems that implement a function of a vehicles) to fail.

2.14. “Failure” means the termination of an intended behaviour of an element or an item.

2.15. “Operational safety” means the absence of unreasonable risk under the occurrence of hazards resulting from functional insufficiencies of the intended functionality (e.g. false/missed detection), operational disturbances (e.g. environmental conditions like fog, rain, shadows, sunlight, infrastructure) or by reasonably foreseeable misuse/errors by the driver, passengers and other road users (safety hazards — without system faults).

2.16. “Unreasonable risk” the overall level of risk for the driver, vehicle occupants and other road users is increased compared to a manually driven vehicle

3. Documentation

3.1. Requirements

The manufacturer shall provide a documentation package which gives access to the basic design of “The System” and the means by which it is linked to other vehicle systems or by which it directly controls output variables.

The function(s) of “The System”, including the control strategies, and the safety concept, as laid down by the manufacturer, shall be explained.

Documentation shall be brief, yet provide evidence that the design and development has had the benefit of expertise from all the system fields which are involved.

For periodic technical inspections, the documentation shall describe how the current operational status of “The System” can be checked.

Information about how the software version(s)¹ and the failure warning signal status can be readable in a standardized way via the use of an electronic communication interface, at least be the standard interface (OBD port).

The Type-approval authority shall assess the documentation package to show that “The System”:

(a) Is designed and was developed to operate in such a way that it is free from unreasonable risks for the driver, passengers and other road users within the declared ODD and boundaries;

(b) Respects, under the vehicle performance requirements specified elsewhere in this UN Regulation;

(c) Was developed according to the development process/method declared by the manufacturer and that this includes at least the steps listed in paragraph 3.4.4.

¹ Reference with regard to RxSWIN will be added when relevant UN Regulation is adopted.
3.1.1. Documentation shall be made available in three parts:

(a) Application for type approval: The information document which is submitted to the type approval authority at the time of type approval application shall contain brief information on the items listed in Appendix 2. It will become part of the approval.

(b) The formal documentation package for the approval, containing the material listed in this paragraph 3. (with the exception of that of paragraph 3.4.4.) which shall be supplied to the Type Approval Authority for the purpose of conducting the product assessment / process audit. This documentation package shall be used by the Type Approval Authority as the basic reference for the verification process set out in paragraph 4. of this annex. The Type Approval Authority shall ensure that this documentation package remains available [for a period determined of at least 10 years counted from the time when production of the vehicle type is definitely discontinued] or [until when there are no longer any operational vehicles of a specific vehicle type].

(c) Additional confidential material and analysis data (intellectual property) of paragraph 3.4.4. which shall be retained by the manufacturer, but made open for inspection (e.g. on-site in the engineering facilities of the manufacturer) at the time of the product assessment / process audit. The manufacturer shall ensure that this material and analysis data remains available [for a period of 10 years counted from the time when production of the vehicle type is definitely discontinued] or [until when there are no longer any operational vehicles of a specific vehicle type].

3.2. Description of the functions of “The System” including control strategies

A description shall be provided which gives a simple explanation of all the functions including control strategies of “The System” and the methods employed to perform the dynamic driving tasks within the ODD and the boundaries under which the automated lane keeping system is designed to operate, including a statement of the mechanism(s) by which control is exercised. The manufacturer shall describe the interactions expected between the system and the driver, vehicle occupants and other road users as well as Human-Machine-interface (‘HMI’).

Any enabled or disabled automated driving functions for which the hardware and software are present in the vehicle at the time of production, shall be declared and are subject to the requirements of this annex, prior to their use in the vehicle. The manufacturer shall also document the data processing in case of continuous learning algorithms are implemented.

3.2.1. A list of all input and sensed variables shall be provided and the working range of these defined, along with a description of how each variable affects system behaviour.

3.2.2. A list of all output variables which are controlled by “The System” shall be provided and an explanation given, in each case, of whether the control is direct or via another vehicle system. The range of control (paragraph 2.7.) exercised on each such variable shall be defined.
3.2.3 Limits defining the boundaries of functional operation including ODD-limits shall be stated where appropriate to automated lane keeping system performance.

3.2.4 Interaction concept with the driver when ODD limits are reached shall be explained including the list of types of situations in which the system will generate a transition demand to the driver.

3.2.5 Information shall be provided about the means to activate, override or deactivate the system including the strategy how the system is protected against unintentional deactivation. This shall also include information about how the system detects that the driver is available to take over driving control along with specification and documented evidence of the used parameter to identify driver attentiveness as well as the influence on the steering thresholds.

3.3 System layout and schematics

3.3.1 Inventory of components.

A list shall be provided, collating all the units of “The System” and mentioning the other vehicle systems which are needed to achieve the control function in question.

An outline schematic showing these units in combination, shall be provided with both the equipment distribution and the interconnections made clear.

This outline shall include:

- Perception and objects detection including mapping and positioning
- Characterization of Decision-making
- Remote supervision and remote monitoring by a remote supervision centre (if applicable).
- The data storage system (DSSAD).

3.3.2 Functions of the units

The function of each unit of “The System” shall be outlined and the signals linking it with other units or with other vehicle systems shall be shown. This may be provided by a labelled block diagram or other schematic, or by a description aided by such a diagram.

3.3.3 Interconnections within “The System” shall be shown by a circuit diagram for the electric transmission links, by a piping diagram for pneumatic or hydraulic transmission equipment and by a simplified diagrammatic layout for mechanical linkages. The transmission links both to and from other systems shall also be shown.

3.3.4 There shall be a clear correspondence between transmission links and the signals carried between Units. Priorities of signals on multiplexed data paths shall be stated wherever priority may be an issue affecting performance or safety.

3.3.5 Identification of units

Each unit shall be clearly and unambiguously identifiable (e.g. by marking for hardware, and by marking or software output for software content) to provide corresponding hardware and documentation association. Where software version can be changed without requiring
replacement of the marking or component, the software identification must be by software output only.

Where functions are combined within a single unit or indeed within a single computer, but shown in multiple blocks in the block diagram for clarity and ease of explanation, only a single hardware identification marking shall be used. The manufacturer shall, by the use of this identification, affirm that the equipment supplied conforms to the corresponding document.

3.3.5.1. The identification defines the hardware and software version and, where the latter changes such as to alter the function of the Unit as far as this Regulation is concerned, this identification shall also be changed.

3.3.6. Installation of sensing system components

The manufacturer shall provide information regarding the installation options that will be employed for the individual components that comprise the sensing system. These options shall include, but are not limited to, the location of the component in/on the vehicle, the material(s) surrounding the component, the dimensioning and geometry of the material surrounding the component, and the surface finish of the materials surrounding the component, once installed in the vehicle. The information shall also include installation specifications that are critical to the system’s performance, e.g. tolerances on installation angle.

Changes to the individual components of the sensing system, or the installation options, shall be notified to the Type Approval Authority and be subject to further assessment.

3.4. Safety concept of the manufacturer

3.4.1. The Manufacturer shall provide a statement which affirms that the “The System” is free from unreasonable risks for the driver, passengers and other road users.

3.4.2. In respect of software employed in “The System”, the outline architecture shall be explained and the design methods and tools used shall be identified (see 3.5.1). The manufacturer shall show evidence of the means by which they determined the realization of the system logic, during the design and development process.

3.4.3. The Manufacturer shall provide the Type Approval Authority with an explanation of the design provisions built into “The System” so as to ensure functional and operational safety. Possible design provisions in “The System” are for example:

(a) Fall-back to operation using a partial system.
(b) Redundancy with a separate system.
(c) Removal of the automated driving function(s).

3.4.3.1. If the chosen provision selects a partial performance mode of operation under certain fault conditions (e.g. in case of severe failures), then these conditions shall be stated (e.g. type of severe failure) and the resulting limits of effectiveness defined (e.g. initiation of a minimum risk manoeuvre immediately) as well as the warning strategy to the driver.

3.4.3.2. If the chosen provision selects a second (back-up) means to realise the performance of the dynamic driving task, the principles of the change-
over mechanism, the logic and level of redundancy and any built in back-up checking features shall be explained and the resulting limits of back-up effectiveness defined.

3.4.3.3. If the chosen provision selects the removal of the automated driving function, this shall be done in compliance with the relevant provisions of this regulation. All the corresponding output control signals associated with this function shall be inhibited.

3.4.4. The documentation shall be supported, by an analysis which shows, in overall terms, how the system will behave to mitigate or avoid hazards which can have a bearing on the safety of the driver, passengers and other road users.

The chosen analytical approach(es) shall be established and maintained by the Manufacturer and shall be made open for inspection by the Type-approval authority at the time of the type approval.

The Type-approval authority shall perform an assessment of the application of the analytical approach(es):

(a) Inspection of the safety approach at the concept (vehicle) level. This approach shall be based on a Hazard / Risk analysis appropriate to system safety.

(b) Inspection of the safety approach at the system level including a top down (from possible hazard to design) and bottom up approach (from design to possible hazards). The safety approach may be based on a Failure Mode and Effect Analysis (FMEA), a Fault Tree Analysis (FTA) and a system-theoretic process analysis (STPA) or any similar process appropriate to system functional and operational safety.

(c) Inspection of the validation/verification plans and results including appropriate acceptance criteria. This shall include validation testing appropriate for validation, for example, Hardware in the Loop (HIL) testing, vehicle on-road operational testing, testing with real end users, or any other testing appropriate for validation/verification. Results of validation and verification may be assessed by analysing coverage of the different tests and setting coverage minimal thresholds for various metrics.

The inspection shall confirm that at least each of the following items is covered where applicable under (a)-(c):

(i) Issues linked to interactions with other vehicle systems (e.g. braking, steering);

(ii) Failures of the automated lane keeping system and system risk mitigation reactions;

(iii) Situations within the ODD when a system may create unreasonable safety risks for the driver, passengers and other road users due to operational disturbances (e.g. lack of or wrong comprehension of the vehicle environment, lack of understanding of the reaction from the driver, passenger or other road users, inadequate control, challenging scenarios);

(iv) Identification of the relevant scenarios within the boundary conditions and management method used to select scenarios and validation tool chosen.
Wrong decision making process for the performance of the dynamic driving tasks (e.g., emergency manoeuvres), for the interaction with other road users and in compliance with traffic rules.

Reasonably foreseeable misuse by the driver (e.g., driver availability recognition system and an explanation on how the availability criteria were established), mistakes or misunderstanding by the driver (e.g., unintentional override) and intentional tampering of the system.

Cyber-attacks having an impact on the safety of the vehicle (can be done through the analysis done under the UN Regulation on cyber security No XX).

The assessment by the approval authority shall consist of spot checks of selected hazards (or cyber threats) to establish that argumentation supporting the safety concept is understandable and logical and implemented in the different functions of the systems. The assessment shall also check that validation plans are robust enough to demonstrate safety (e.g., reasonable coverage of chosen scenarios testing by the validation tool chosen) and have been completed.

It shall demonstrate that the vehicle is free from unreasonable risks for the driver, vehicle occupants and other road users in the operational design domain, i.e. through:

- an overall validation target (i.e., validation acceptance criteria) supported by validation results, demonstrating that the entry into service of the automated lane keeping system will overall not increase the level of risk for the driver, vehicle occupants, and other road users compared to a manually driven vehicles; and

- A scenario specific approach showing that the system will overall not increase the level of risk for the driver, passengers and other road users compared to a manually driven vehicles for each of the safety relevant scenarios; and

The Type Approval Authority shall perform or shall require performing tests as specified in paragraph 4. to verify the safety concept.

This documentation shall itemize the parameters being monitored and shall set out, for each failure condition of the type defined in paragraph 3.4.4. of this annex, the warning signal to be given to the driver/passengers/other road users and/or to service/technical inspection personnel.

This documentation shall also describe the measures in place to ensure the “The System” is free from unreasonable risks for the driver, vehicle occupants, and other road users when the performance of “The System” is affected by environmental conditions e.g. climatic, temperature, dust ingress, water ingress, ice packing.

In respect of software and hardware employed in “The System”, the manufacturer shall demonstrate to the type approval authority in terms of a safety management system that effective processes, methodologies and tools are in place, up to date and being followed within the organization to manage the safety and continued compliance throughout the product lifecycle (design, development, production, operation including respect of traffic rules, and decommissioning).
3.5.2. The design and development process shall be established including safety management system, requirements management, requirements’ implementation, testing, failure tracking, remedy and release.

3.5.3. The manufacturer shall institute and maintain effective communication channels between manufacturer departments responsible for functional/operational safety, cybersecurity and any other relevant disciplines related to the achievement of vehicle safety.

3.5.4. The manufacturer shall have processes to monitor safety-relevant incident/accidents/crashes caused by the engaged automated lane keeping system and a process to manage potential safety-relevant gaps post-registration (closed loop of field monitoring) and to update the vehicles. They shall report critical incidents (e.g. collision with another road users and potential safety-relevant gaps) to the type-approval authorities when critical incidents occur.

3.5.5. The manufacturer shall demonstrate that periodic independent internal process audits are carried out to ensure that the processes established in accordance with paragraphs 3.5.1 to 3.5.4. are implemented consistently.

3.5.6. Manufacturers shall put in place suitable arrangements (e.g. contractual arrangements, clear interfaces, quality management system) with suppliers to ensure that the supplier safety management system comply with the requirements of paragraph 3.5.1. (except for vehicle related aspects like “operation” and “decommissioning”), 3.5.2, 3.5.3 and 3.5.5.

4. Verification and tests

4.1. The functional operation of “The System”, as laid out in the documents required in paragraph 3., shall be tested as follows:

4.1.1. Verification of the function of “The System”

The Type approval authority shall verify “The System” under non-failure conditions by testing on a track a number of selected functions from those described by the manufacturer in paragraph 3.2. above, and by checking the overall behaviour of the system in real driving conditions including the compliance with traffic rules.

These tests shall include scenarios whereby the system is overridden by the driver.

Tests according to this Annex shall take into account tests already conducted in Annex 5 of this Regulation.

4.1.1.1. The verification results shall correspond with the description, including the control strategies, provided by the manufacturer in paragraph 3.2. and shall comply with the requirements of this regulation.

4.1.2. Verification of the safety concept of paragraph 3.4.

The reaction of “The System” shall be checked under the influence of a faults in any individual unit by applying corresponding output signals to electrical units or mechanical elements in order to simulate the effects of internal failure within the unit. The Type approval authority shall conduct this check for at least one individual unit, but shall not check the reaction of “The System” to multiple simultaneous failures of individual units.

The Type Approval Authority shall verify that these tests include aspects that may have an impact on vehicle controllability and user information (HMI aspects e.g. transition scenarios).
4.1.2.1 The Type Approval Authorities shall also check a number of scenarios that are critical for the object event detection and response (OEDR) and characterization of the decision-making and HMI functions of the system (e.g. object difficult to detect, when the system reaches the ODD boundaries, traffic disturbance scenarios) as defined in the regulation.

4.1.2.2 The verification results shall correspond with the documented summary of the hazard analysis, to a level of overall effect such that the safety concept and execution are confirmed as being adequate and in compliance with the requirements of this regulation.

4.2 Simulation tool and mathematical models for verification of the safety concept may be used in accordance with Schedule 8 of Revision 3 of the 1958 Agreement, in particular for scenarios that are difficult on a test track or in real driving conditions. Manufacturers shall demonstrate the scope of the simulation tool, its validity for the scenario concerned as well as the validation performed for the simulation tool chain (correlation of the outcome with physical tests).

5. Reporting

Reporting of the assessment shall be performed in such a manner that allows traceability, e.g. versions of documents inspected are coded and listed in the records of the Technical Service.

An example of a possible layout for the assessment form from the Technical Service to the Type Approval Authority is given in Appendix 1 to this Annex. The listed items in this Appendix are outlined as minimum set of items which need to be covered.

6. Communication to other Type Approval Authorities (Appendix 2) containing:

- Description of the ODD and the high level functional architecture focusing on the functions available to the driver, vehicle occupants and other road users.

- Test results during the verification process by the type approval authorities.

7. Competence of the auditors/assessors

The assessments under this Annex shall only be conducted by auditors/assessors with the technical and administrative knowledge necessary for such purposes. They shall in particular be competent as auditor/assessor for ISO 26262-2018 (Functional Safety - Road Vehicles), and ISO PAS ISO/PAS 21448 (Safety of the Intended Functionality of road vehicles); and shall be able to make the necessary link with cybersecurity aspects in accordance with UN Regulation No 15[X] and ISO/SAE 21434). This competence should be demonstrated by appropriate qualifications or other equivalent training records.
Annex 4 - Appendix 1

Model assessment form for automated lane keeping system

Test report No: ..

1. Identification

1.1. Make: ..

1.2. Vehicle Type: ..

1.3. Means of system identification on the vehicle: ..

1.4. Location of that marking: ..

1.5. Manufacturer’s name and address: ..

1.6. If applicable, name and address of manufacturer’s representative:

1.7. Manufacturer’s formal documentation package:

 Documentation reference No:
 Date of original issue:
 Date of latest update:

2. Test vehicle(s)/system(s) description

2.1. General description: ..

2.2. Description of all the control functions of “The System”, and methods of operation: ...

2.3. Description of the components and diagrams of the interconnections within “The System”:

2.4. Description of all the control functions of “The System”, and methods of operation: ...

2.5. Description of the components and diagrams of the interconnections within “The System”:

3. Manufacturer’s safety concept

3.1. Description of signal flow and operating data and their priorities:

3.2. Manufacturer’s declaration:

 The manufacturer(s) .. affirm(s) that the “The System” is free from unreasonable risks for the driver, vehicle occupants and other road users.

3.3. Software outline architecture and the design methods and tools used:

3.4. Explanation of the safety concept of “The System”: ..

3.5. Documented analyses of the behaviour of “The System” under individual hazard or fault conditions: ...

3.6. Description of the measures in place for environmental conditions:
3.7. Provisions for the periodic technical inspection of “The System”:

3.8. Results of “The System” verification test, as per para. 4.1.1. of Annex 4 to UN Regulation No. [15X]:

3.9. Results of safety concept verification test, as per para. 4.1.2. of Annex 4 to UN Regulation No. [15X]:

3.10. Date of test(s):

3.11. This test(s) has been carried out and the results reported in accordance with to UN Regulation No. [15X] as last amended by the series of amendments.

 Technical Service carrying out the test
 Signed: Date:

3.12. Comments:
Annex 4 - Appendix 2: Information document form for automated lane keeping systems to be provided by the manufacturer for the approval

1. System description Automated Lane Keeping System
 1.1. Operational Design Domain (Speed, road type, country, Environment, Road conditions, etc)/ Boundary conditions/ Main conditions for Minimum risk manoeuvres and transition demands
 1.2. Basic Performance (e.g. Object and Event Detection and Response (OEDR) …)
 1.4. The means to activate, override or deactivate the system.

2. Description of the functions of “The System” including control strategies
 2.1. Main automated Driving Functions (functional architecture, environmental perception).
 2.1.1. Vehicle-internal
 2.1.2. Vehicle-external (e.g. backend)

3. Overview major components (units) of “The System”
 3.1. Control Units
 3.2. Sensors
 3.3. Maps/Positioning

4. System layout and schematics
 4.1. Schematic system layout including sensors for the environmental perception (e.g. block diagram)
 4.2. List and schematic overview of interconnections (e.g. block diagram)

5. Specifications
 5.1. Means to check the correct operational status of the system
 5.2. Means implemented to protect against simple unauthorized activation/operation and interventions into the system

6. Safety Concept
 6.1. Safe Operation – Vehicle Manufacturer Statement
 6.2. Outline software architecture (e.g. block diagram)
 6.3. Means by which the realization of the system logic is determined
 6.4. General explanation of the main design provisions built into “The System” so as to generate safe operation and interaction with other road users under fault conditions, under operational disturbances and the occurrence of planned/unplanned conditions that would exceed the ODD.
 6.5. General description of failure handling main principles, fall-back level strategy including risk mitigation strategy (minimum risk manoeuvre)
 6.6. Driver, vehicle occupants and other road users interaction including warning signals and transition demands to be given to driver.
 6.7. Validation by the manufacturer for the performance requirements specified elsewhere in the regulation including the OEDR, the HMI, the respect of traffic rules and the conclusion that that the system is designed in such a way that it is free from unreasonable risks for the driver, vehicle occupants and other road users.

7. Verification and test by the authorities
 7.1. Verification of the basic function of “The System”
 7.2. Examples for checking the system reaction under the influence of a failure or a operational disturbance, emergency conditions and boundary conditions

8. Data Storage System
 8.1. Type of Data stored
8.2. Storage location
8.3. Recorded occurrences and data elements means to ensure data security and data protection
8.4. Means to access the data

9. Cyber security (cross reference to the cyber regulation is possible)
9.1. General description of the cyber security and software update management scheme
9.2. General description of the different risks and measures put in place to mitigate these risks.

10. Information provisions to users
10.1. Model of the information provided to users (including expected driver’s tasks within the ODD and when going out of the ODD,
10.2. Extract of the relevant part of the owner’s manual