# Decarbonisation pathways within deep sea shipping:

**Outlook and options** 



Chris Hughes 12 Feb 2020



### Agenda.

- Initial IMO GHG Strategy
- Zero carbon fuels:
  - Investment Readiness
  - Technology Readiness
  - Community Readiness
- Deep Sea vs IWW
- Q&A



## Why are zero-carbon fuels needed for full decarbonisation?

To achieve an absolute reduction in GHG of at least 50% by 2050.

- Shipping emits around 2.3% of global CO<sub>2</sub> emissions
- Unchecked increase to 10% by mid-century

#### Pathways for international shipping's CO<sub>2</sub> emissions



## What is the required reduction in carbon intensity?

 By 2050 shipping emissions will need to decrease by 60-90% in fleet average carbon intensity in order to accommodate a growing demand of transport

- Efficiency and renewables are not enough to reach the goal
- Zero-emission vessels need to be entering the fleet from 2030



## **Delivering on the Initial IMO Strategy**

 Consensus on goal-based approach to short-term measures to improve the carbon intensity of shipping

- Amendments to MARPOL Annex VI
- Foundation not solution

#### **EEDI** (New Ships)

Goal-Based
Operational &
Technical
Efficiency
Measures
(All Ship)

Goal-Based
Technical
Efficiency
Measures
(Existing Ships)

A Hybrid

 Mid- and Long-Term Measures to transition shipping from reliance on fuel oils

- Novel Regulatory Approaches
- Industry Initiative and Ambition

Encouraging Uptake of Low- and Zero-Carbon

Fuels

Lifecycle Analysis

Methane Slip and VOCs

## What do we mean by zero-carbon fuels?

Transition to zero emission vessels means phasing out fossil based fuels.

|                          | Zero-carbon fuels |             |                   |                    |             |  |  |
|--------------------------|-------------------|-------------|-------------------|--------------------|-------------|--|--|
| Energy source            | Methanol          | Gas oil     | Hydrogen          | Ammonia            | Electricity |  |  |
| Natural gas with CCS     |                   |             | NG-H <sub>2</sub> | NG-NH <sub>3</sub> |             |  |  |
| Biomass                  | bio-methanol      | bio-gas oil |                   |                    |             |  |  |
| Renewable<br>electricity | e-methanol        | e-gas oil   | e-H <sub>2</sub>  | e-NH <sub>3</sub>  | batteries   |  |  |

## Our 'Getting to Zero' model.



## **Technology readiness.**

## Onboard technology systems ready in 2-3 years

- Safety risks can be mitigated
- Experience building phase
- Technology challenge is the supply infrastructure

#### 2020 Technology readiness levels for onboard system



## Comparative energy equivalence.

#### LNG

Mass ~x0.8

Volume ~x2

#### Hydrogen 350 bar

Mass ~x0.3

Volume ~x15.5

#### **Methanol**

Mass ~x1.8

Volume ~x2.4

#### Hydrogen 900 bar

Mass ~x0.3

Volume ~x6.7

#### **Ammonia**

Mass ~x1.8

Volume ~x2.9

## Hydrogen

-253 °C

Mass ~x0.3

Volume ~x3.3



### Investment readiness.

## The cheapest option is still likely to be 2-3 times the total cost of ownership.

- The main cost driver is fuel price
- Need to reduce the cost of fuel production technologies
- Applying a carbon price makes the investment case more attractive ~ \$200-300 / tonne of CO<sub>2</sub>
- Uncertainty in future production costs: Direct Air Capture



## **Community Readiness.**

## Policy intervention and a fundamental shift to the incentives scheme is needed

- Fossil fuels need to be least attractive and zero-carbon fuels more attractive
- Closely related to how the wider energy system decarbonises
- Competition with other sectors
- Market incentive schemes





## **IWW and Coastal Shipping**



















### **Differences between Deep Sea and IWW?**

Range and Size drive differences in onboard technology feasibility

Feedstock and production availability/cost still key drivers

|                       | Zero-carbon fuels |             |                                 |                    |             |  |
|-----------------------|-------------------|-------------|---------------------------------|--------------------|-------------|--|
| Energy source         | Methanol          | Gas oil     | Hydrogen                        | Ammonia            | Electricity |  |
| Natural gas with CCS  |                   |             | NG-H <sub>2</sub>               | NG-NH <sub>3</sub> |             |  |
| Biomass               | bio-methanol      | bio-gas oil |                                 |                    |             |  |
| Renewable electricity | e-methanol        | e-gas oil   | e-H <sub>2</sub>                | e-NH <sub>3</sub>  | batteries   |  |
|                       |                   |             | Compressed vs<br>Liquid storage |                    | Hybrid      |  |
|                       |                   |             | Fuel Cells: size                |                    |             |  |

## **Technology readiness: Deep Sea vs IWW**

Safety risks can be mitigated

Experience building phase

 Primary technology challenge is the supply infrastructure

IWW advantages

Fire and Gas Explosion in Battery Room of Norwegian Ferry Prompts Lithium-Ion Power Warning

October 15,2019 by Mike Scholer





#### 2020 Technology readiness levels for onboard system



### Conclusions.

- Certain pathways appear more resilient that others from the perspective of asset longevity
- Fuel price is the predominant factor
- Competitive options in the short-term may become uncompetitive in the long-term
- Many unknowns and uncertainties still exist
  - I. Market price development
  - II. Competing demand
  - III. Technology development for fuel production
  - IV. On-board safety
- Much overlap, but some material differences Deep Sea to IWW: IWW to lead Deep Sea?

## Thank you.

Chris Hughes Global Lead, Shipping Markets Lloyd's Register Email: <a href="mailto:christopher.hughes@lr.org">christopher.hughes@lr.org</a>