

Elias Hurmekoski, Lauri Hetemäki

Structural changes in forest products markets – implications for outlook studies

Pushkino, 12 December 2016

Streamlining the next round of Forest Sector Outlook Studies in the UNECE region

www.efi.in

Outline

- 1. Structural changes in forest products markets
- 2. Implications for outlook study methods
- 3. Conclusions

Structural changes in the European forest products markets

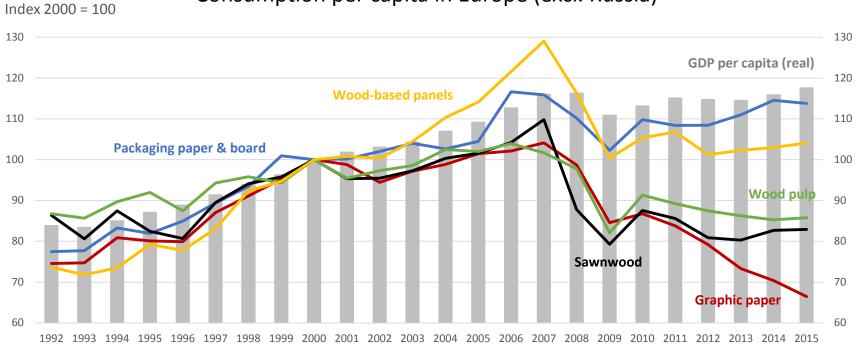
"Creative destruction" (Joseph Schumpeter, 1940s)

Destructive trends

- Mature pulp & paper and sawnwood markets in Europe
- Record long economic downturn (8 years)
- Investments shifting to fast-growing markets in Asia, or low-cost production regions like South America

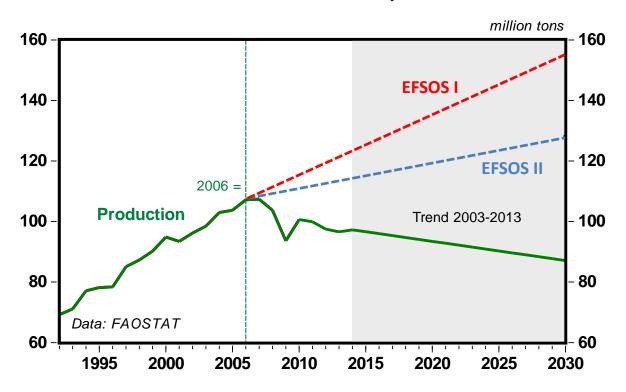
Creative trends

- Diversification
 - sawnwood to engineered wood products
 - Pulp & paper to biorefineries
- Diminishing industry boundaries
- Bioeconomy strategies & policies



Statistics are giving an increasingly misleading picture!

Mature markets – both cyclical and structural reasons


Consumption per capita in Europe (excl. Russia)

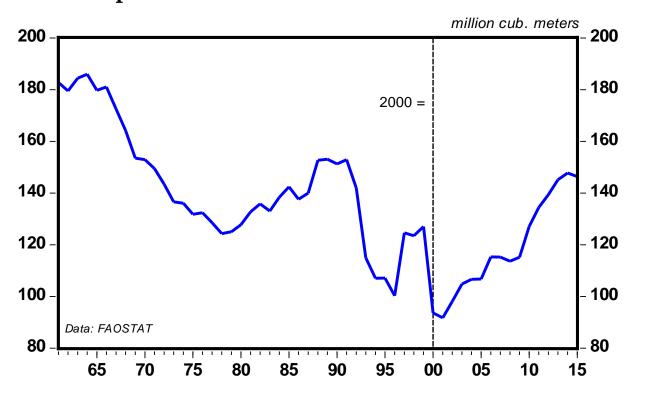
Outlook for European Paper and Paperboard Changing

(excl. Russia)

EFSOS (2005, 2011) & Trend Projections to 2030

Similar situation for wood products markets

Sawnwood Consumption in Europe (excl. Russia)

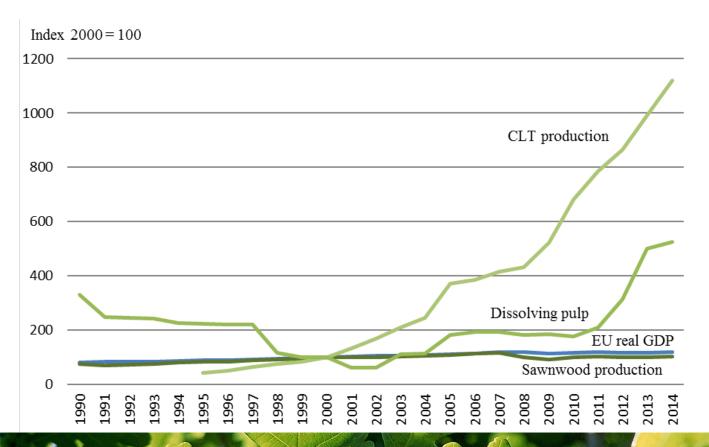


"Trend 1" refers to the trend from 1992-2012, and "Trend 2" refers to 2000-2012 trend

Source: Hänninen et al. 2014, European Forest Industry and Forest Bioenergy Outlook up to 2050: A Synthesis, Cleen/Fibic Research Report no D 1.1. 1, Helsinki, Finland, 2014.

European energy wood production again increasing

European Wood Fuel Production 1961-2015


50% of wood fuel comes from wood residues, and most of the rest form logging residues, thinnings and coppice

Growing wood residues consumption implies increasing resource-efficiency and cascading use

Wood fuels = all types of biofuels originating from woody biomass, e.g., firewood, log wood, wood chips, wood pellets, wood briquettes (FAO def.). These come from forests, plantations (coppice), urban forests, by-products (chips, bark, etc.), post-consumer wood.

Emerging products

Cross Laminated Timber (CLT)

- > 15 % average annual growth rate since 2007, despite the economic downturn!
- > Clear sign of different life cycle stage compared to sawnwood!

Dissolving pulp

> Pöyry (2015) expects the global demand to double by 2030

Hetemäki & Hurmekoski (2016)

3 categories of "new forest products"

- 1. Old products with newly increasing demand due to changes in the operating environment: e.g. dissolving pulp for textiles
- 2. Old products with incremental improvements (lighter weight or reduced costs): e.g., paper and packaging products
- 3. Novel products: e.g. based on nanocellulose fibers exhibit new properties in nano scale, such as transparency and high absorptive capacity

Implications for outlook studies

www.efi.int

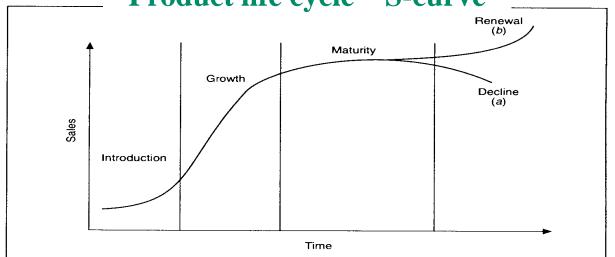
Validity of methods depends on the research questions

Important viewpoints typically considered in the forest sector include:

- ➤ The availability / sufficiency of wood resources
- ➤ What can be *technically* produced from wood
- ➤ Short-term *business cycles*

However, there are questions of equal importance, yet receiving less emphasis:

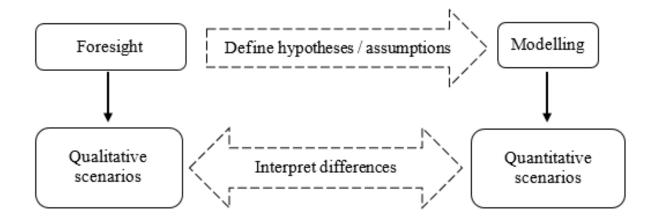
- The *demand* for goods and services
- Prospects for *employment*, *value creation*, etc.
- ➤ Long-term *structural changes*


Global changes in forest products markets

- 1. Shifting economic power (GDP, competitiveness)
- 2. Environmental issues and climate and environmental policies (externalities)
- 3. Creative destruction (*substitution*, *new products*)
 - 1. Declining paper markets in OECD countries (and China)
 - 2. New markets (biofuels, construction solutions, etc.)

- ightharpoonup Typical way of determining demand for forest products: D = f(p, GDP)
- ➤ Is the dominant evidence-based methodology able to consider these aspects?

www.efi.int


Product life cycle – S-curve

	Introduction	Growth	Maturity	Decline	Renewal
Product example	Bioplastics	EWPs	Sawnwood	Newsprint	Textiles
Market characteristics & affecting factors	Technical and economic barriers; uncertainty; hype	Growth independent of GDP	Business cycle dependency; stable or small growth rate	Decline in demand, due to substitution for superior products	Rebound in demand due to new drivers; cf. growth phase products
Methods ²	Qualitative scenario analysis	Logistic replacement models; Agent- based modelling	Econometrics	Substitution models; Bayesian econometrics	Substitution models; Bayesian econometrics

Integration of approaches

Based on Fortes et al. (2015)

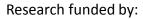
Conclusions

www.efi.int

EU forest biomass demand in 2030 likely to be overestimated in previous studies

- **1. Structural changes:** Likely to decrease demand for industrial wood in EU, rather than increase, by 2030
- **2. Market adjustments:** International trade and prices clear potential gaps for forest biomass
 - ➤ A gap between supply and demand is not possible!
- 3. EU and global climate and energy policies are one of the **key uncertainties**
 - → Points 1. and 2. will significantly reduce forest biomass demand

How to better capture structural changes and explore the uncertainties?


- 1. Update income elasticities and add omitted variables in demand equations
- 2. Introduce complementary research approaches e.g., agent-based modelling and purely qualitative methods

➤ Need for a critical mass of researchers and funding!

Thank you!

elias.hurmekoski@efi.int

FORBIO project, under the Strategic Research Funding of the Academy of Finland

References for further infromation

- 1. Buongiorno, J. 2015a. Income and time dependence of forest product demand elasticities and implications for forecasting. Silva Fennica 49(5):1395.
- 2. Hansen, E., Panwar, R. & Vlosky, R. & (eds.). The *Global Forest* Sector: *Changes, Practices, and Prospects*. CRC Press, Taylor and Francis Group, USA. 462 p. https://www.researchgate.net/publication/259289511 Markets and Market Forces for Pulp and Paper Products?ev=prf pub
- 3. Hetemäki, L. (ed.) 2014. Introduction. Future of the European Forest-Based Sector: Structural Changes Towards Bioeconomy. EFI What Science Can Tell Us —report Vol. 6., 11-14 pp. http://www.efi.int/portal/virtual_library/publications/what_science_can_tell_us/6/
- 4. Hetemäki, L. & Hurmekoski, E. 2016. Forest products markets under change: review and research implications. *Current Forestry Reports*, vol. 2, no. 3; 177-188.
- 5. Hetemäki, L., Kuuluvainen, J. & Toppinen, A. 2016. Future of forest-based sector state of the art and research needs. *Festschrift, in honor of Ole Hofstadt and Birger Solber,* Norwegian University of Life Sciences (NMBU). INA Fagrapport 36. https://www.researchgate.net/publication/308097653 Future of forest-based sector state of the art and research needs
- 6. Hurmekoski, E. 2016. Long-Term outlook for wood construction in Europe. Academic dissertation (Ph.D.), Univeristy of Eastern Finland. http://www.metla.fi/dissertationes/df211.pdf
- 7. Hurmekoski, E. & Hetemäki, L. 2013. Studying the Future of the Forest Sector: Review and Implications. Forest Policy & Economics, 34 (2013): 17–29.
 https://www.researchgate.net/publication/237101527_Studying_the_future_of_the_forest_sector_Review_and_implications_for_long-term_outlook_studies?ev=prf_pub
- 8. Hurmekoski, E., Hetemäki, L. & Linden, M. 2015. Factors Affecting Sawnwood Consumption in Europe, *Forest Policy and Economics*, vol. 50, 236-248. https://www.researchgate.net/publication/264249180 Factors Affecting Sawnwood Consumption in Europe?ev=prf_pub
- 9. Nikolakis, W. and Innes, J. (eds.) 2014. Forests and Globalization. Challenges and Opportunities for Sustainable Development. Routledge, Taylor & Francis Group.
- 10. UNECE/FAO. 2011. European Forest Sector Outlook Study (EFSOS II). UNECE Timber Committee FAO European Forestry Commission. Available at: http://www.unece.org/efsos2.html.