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Abstract and Paper 

Funded by the EU project “Open Source tools for perturbative confidentiality methods” a cell key method 

useable for protecting frequency count tables by additive noise has been implemented in the package τ-Argus 

and as separate R package cellKey. An additional objective of the project was extending these implementations 

to the case of continuous variables. The paper addresses the main methodological issues of such an extension: 

In the case of magnitude variables, usually one applies multiplicative instead of additive noise. Typically, the 

noise is applied to the contributions of units with the highest assumed disclosure risk, but in some situations 

simpler options might be acceptable. Of course, there ought to be parameters controlling the magnitude of the 

multiplicative noise. The most important issue, however, is how to interface with noise design. The options we 

consider are Normal or Laplacian distributed noise, but also a generalisation of the noise design implemented in 

the R package ptable. The paper will propose an extended version of this package, able to provide perturbation 

tables with transition probabilities for non-integer valued data. In particular we suggest in which cases, and 

then, how to combine distributions provided in a perturbation table. 
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Abstract: It was one objective of the EU project “Open Source tools for perturbative confidentiality 

methods” to extend implementations of the cell key method useable for protecting frequency count 

tables by additive noise implemented in the package τ-Argus and the separate R package cellKey to the 

case of continuous variables. The paper addresses the main methodological issues of the extension: In 

the case of magnitude variables, usually one applies multiplicative instead of additive noise. Typically, 

the noise is applied to the contributions of units with the highest assumed disclosure risk. Of course, 

there ought to be parameters controlling the magnitude of the multiplicative noise. The most important 

issue, however, is how to interface with noise design. We mainly consider a generalisation of the 

entropy maximization noise design implemented in the R package ptable. The paper proposes an 

extended version of the ptable package, able to provide perturbation tables with transition probabilities 

for non-integer valued data. In particular we explain how to apply convex combination of noise drawn 

from discrete noise distributions to generate noise for continuous data. 

1. Introduction 

The cell key method for statistical disclosure limitation by random noise is a well-

known post-tabular perturbative disclosure control method for frequency count tables. 

Funded by the EU project “Open Source tools for perturbative confidentiality 

methods” a cell key method useable for protecting frequency count tables by additive 

noise has been implemented in the package τ-Argus and as separate R package 

cellKey (Meindl et al., 2018). Both packages rely on the R-package ptable (Enderle 

and Giessing, 2019) to compute random distributions by maximizing entropy 

(Giessing, 2016; Marley and Leaver, 2011). 

These basic implementations of the cell key method have now been extended to the 

case of continuous variables. Assuming some familiarity with the methodological 

concepts of the basic implementations, c.f. Giessing et al. (2018) (Appendix 1), in the 

present document we explain the most relevant methods and facilities of the enhanced 

implementation. For further details see Giessing et al. (2019). 

The extended packages offer fairly generic implementations that would be useful for a 

wide range of applications. We have also designed the parametrization of extended 

packages in such a way that – along with some (future) guidelines – developing a 

suitable setting should be as intuitive as possible and manageable also for NSI’s with 

little or no previous experience in the design of post-tabular random noise. Notably, 

the extensions require an extended version of the ptable package as well, in particular 
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also of the interface format of the package which provides cumulated transition 

probabilities. 

We also considered suggestions of Ma et al (2016) for using different noise 

distributions for cells with even and odd number of contributions: If two cells A and B 

differ by only one respondent, the number of respondents will be even for either A or 

B, and odd for the other one. Using different noise distributions can therefore in such 

cases reduce disclosure risks of a specific differencing attack. See sec. A.1.3 for some 

more illustration of the issue and reference. 

Section 2 introduces the concept of noise factors implementing a kind of noise that 

could be regarded on one hand as leading to constant noise variance coefficients (vs. 

the constant noise variance applied with a cell key method for protecting frequency 

tables). On the other hand, we allow some flexibility of those coefficients. How to use 

and adapt these basic principles in specific situations, like when non-negativity of the 

perturbed data is a requirement to be guaranteed, is the subject of section 3. Before 

finishing with a short summary, section 4 finally explains how the extended packages 

apply convex combination of noise drawn from discrete noise distributions to generate 

noise for continuous data building on a generalisation of.  

2. Noise factors: Noise variance vs. noise variance “coefficient”  

A fundamental concept of random noise for frequency count tables formulated in 

Fraser and Wooton (2005) and implemented in the R-package ptable that supports the 

noise design of the implementation of CKM for frequency tables in -Argus and 

cellKey is that the noise variance should be constant for all table cells. 

For tabulations of continuous (magnitude) variables, this principle will usually not be 

suitable: it will lead to either not enough protection for table cells with large 

contributions, or to too much protection (e.g. high information loss) for table cells with 

small contributions. Literature typically suggests multiplicative noise where – unlike 

in the case of the additive noise for frequency tables – not the noise variance, but a 

kind of noise variance coefficient should be – more or less – constant. 

For example, the table builder of Thompson et al. (2013) implements noise that can be 

regarded as computing the noise by adding the sum of 𝑡𝑜𝑝𝐾 random variables 

 𝑋̂𝑗 (𝑗 = 1, . . , 𝑡𝑜𝑝𝐾), where each component 𝑋̂𝑗 has a fixed conditional distribution, 

i.e. conditional on the (weighted) top-kth contribution 𝑤𝑗𝑦𝑗(= 𝑥𝑗) to a table cell with 

ordered contributions (|𝑥1| ≥ |𝑥2| ≥. . ). The coefficients 
√Var(𝑋̂𝑗|𝑥𝑗)

𝑥𝑗
 are constant. 

According to Thompson et al. (2013) this constant will be the user defined parameter 

𝑚𝑗 typically representing a percentage (of, e.g. 𝑥𝑗). In this document, we basically 
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follow this concept. For ease of notation (and practicality), in the following we assume 

proportionality of the parameters, i.e. 𝑚𝑗 = 𝜀𝑗𝑚1 for 𝑗 = 2, . . , 𝑡𝑜𝑝𝐾 with 0 ≤ 𝜀𝑗 ≤ 1, 

and 𝜀1 = 1. 

With these definitions we can express a realization of the 𝑗th noise component 𝑋̂𝑗 as 

(2.1) 𝑋̂𝑗 ∶= 𝑥𝑗𝜀𝑗𝑚1𝑣𝑗, with 𝑣𝑗  a realization of a random variable 𝑉 (c.f. sec. 4 for 

further discussion of how to design a suitable variable 𝑉), factor 𝑥𝑗 the (weighted) top-

kth contribution to the table cell to be protected by the noise, and factors 𝜀𝑗 and 𝑚1 

parameters to be fixed by the disseminator. Typically, 𝑥𝑗 will be the largest factor of 

the noise (component). 

As often top-kth observations are considered to have the highest disclosure risk, it is 

usually the most sensible approach to employ them as noise factors. However, we also 

included the following three alternative noise factor concepts that can be useful in 

special situations: 

(1) Especially when the intention is to use the perturbed magnitude data to compute a 

mean value to data typically provided by banded distributions (like “Age”), the 

difference between largest and smallest contribution in a table cell as noise factor 

offers some nice properties. 

(2) When data is not very skewed, the cell mean might be a simple, feasible option for 

a noise factor. It could be computed even with table builder packages not offering 

computation of largest contributors. 

(3) In a very simple concept, the cell value itself might be considered as noise factor. 

In either of these cases, we formally set 𝑡𝑜𝑝𝐾 ∶= 1, and assume 𝑥1 (in formula (2.1)) 

to represent the noise factor of the selected option (1) to (3). 

Now, in order to introduce more flexibility, in sec. 2.1 we recall a concept of Giessing 

(2012) which would define coefficient 𝑚1 as function of the respective noise factor1 

𝑥𝑗, e.g. 𝑚 (𝑥𝑗) .  

2.1 A flex-function for noise variance coefficients
2
 

The idea of the flex-function is based on the consideration that for large observation 𝑥𝑗 

the product 𝑥𝑗𝜀𝑗𝑚1𝑣𝑗 which determines the absolute amount of the noise becomes 

quite large even for smaller “percentages” 𝜀𝑗𝑚1. On the other hand, choosing a 

                                                 
1 In case of the alternative concepts (1) to (3) above, of course we assume 𝑡𝑜𝑝𝐾 = 𝑗 = 1. 
2 In this section we generally assume 𝑥𝑗 ≥ 0. For 𝑥𝑗 < 0, let 𝑚1 (𝑥𝑗)= 𝑚1 (|𝑥𝑗|). 
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small 𝑚1 parameter to avoid too much perturbation leads to very low noise amounts 

(i.e. eventual underprotection) for smaller observations 𝑥𝑗. 

Formula (2.2 ) defines a noise coefficient function 𝑚(𝑧) we refer to in the following 

as “flex-function”. For 𝑧 ≥ 𝑧𝑓 , 𝑧𝑓 referred to as “flex-point” , the flex-function 

𝑚(𝑧) computes the 𝑚1 parameter as a decreasing function of 𝑧. Apart from the flex-

point, the parameters of the function are the desired maximum of the noise coefficient, 

𝜎1 (reached at the flex-point), its lower limit 𝜎0 for large 𝑧 and a parameter 𝑞 ≥ 1 

affecting the shape of the function. For smaller observations below the flex-point we 

set 𝑚(𝑧) ∶= 𝜎1. 

(2.2 )  𝑚(𝑧) ∶= {
𝜎0 (1 +

𝜎1𝑧−𝜎0𝑧𝑓

𝜎0𝑧𝑓
(

2𝑧𝑓

𝑧𝑓+𝑧
)

𝑞

) for 𝑧 ≥ 𝑧𝑓

𝜎1 for 𝑧 < 𝑧𝑓

. 

See figure 1a below for illustration. 

However, if observations may become very small, or even zero, the absolute noise 

amount determined by 𝑥𝑗𝜀𝑗𝑚(𝑥𝑗)𝑣𝑗  (= 𝑥𝑗𝜀𝑗𝜎1𝑣𝑗) still may become eventually too 

small. As a way out we suggest to further modify the concept: For very small 𝑥1 ≤ 𝑧𝑠, 

with “separation point” 𝑧𝑠  given by 

(2.3) 𝑧𝑠 ∶=
𝜎2

𝜎1√𝐸
 and 𝐸 ∶= 1 + ∑ 𝜀𝑗

2
𝑗=2,..,𝑡𝑜𝑝𝐾 , let 

(2.4)  𝑋̂1 ∶= 𝑢, with 𝑢 a realization of a random variable 𝑈 with noise variance 𝜎2
2  3 . 

To keep it simple, for 𝑥𝑗 ≤ 𝑧𝑠  when 𝑗 > 1, let  𝑋̂𝑗 ∶= 0. 

Assuming a “standard” variance of 1 for the random component 𝑣𝑗  ,with this definition 

of 𝑧𝑠 we get for observation tuple (𝑥𝑗 = 𝑧𝑠)
𝑗=1,…,𝑇𝑜𝑝𝐾

the same noise variance of 

∑ 𝑧𝑠
2𝜀𝑗

2
𝜎1

2
𝑗=1,..,𝑇 = 𝑧𝑠

2𝜎1
2𝐸 = (

𝜎2

𝜎1√𝐸
)

2

𝜎1
2𝐸 = 𝜎2

2  as the noise variance 𝜎2
2 we get 

for tuples (𝑥𝑗 < 𝑧𝑠)
𝑗=1,…𝑇𝑜𝑝𝐾

 , avoiding undesirable “jumps” in the the noise variance 

around (𝑥𝑗 = 𝑧𝑠)
𝑗=1,…𝑇𝑜𝑝𝐾

.  

Figures 1a and 1b below show for the case 𝑇𝑜𝑝𝐾 = 1 (hence: 𝐸 = 1) and assuming 

variance of 1 for the random component 𝑣1 an example of a noise coefficient flex-

function 𝑚(𝑧) and the resulting noise standard deviation 𝑧 𝑚(𝑧) for selected 

                                                 
3 A reasonable choice for parameter 𝜎2 could be the square root of the noise variance 𝜎2 selected by the 

disseminator when designing random noise for CKM to protect frequency tables. Note, we assume 

𝑧𝑠 ∶= 0, if the concept should not foresee a separation. 
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arguments 𝑧.  In the example, settings are 𝜎0 = 0.05, 𝜎1 = 0.25, 𝑧𝑓 = 23, 𝑞 = 3, and 

𝜎2
2 = 2 (hence: separation point 𝑧𝑠 = √2 0.25⁄ ≅ 5.7) . 

  

Fig. 1a: Example of a flex-function 

𝑚(𝑧) for the noise coefficient  

Fig. 1b: Example for noise std.dev. 

𝑧 𝑚(𝑧). Blue line: constant std. dev. 

𝜎2 (for 𝑧 < 𝑧𝑠) 

To summarize, when using a flex-function we compute the perturbed weighted sum of 

a continuous variable with original weighted sum 𝑥 as 

(2.5) 𝑋̂ = 𝑥 + ∑  𝑋̂𝑗𝑗=1,…,𝑡𝑜𝑝𝐾 , with  𝑋̂𝑗 given by (2.1), replacing in (2.1) 𝑥𝑗𝑚1 by 

𝑥𝑗  𝑚(𝑥1) for 𝑥𝑗 ≥  𝑧𝑠, and 𝑋̂1 ∶= 𝑢 for 𝑥1 <  𝑧𝑠, and  𝑋̂𝑗 ∶= 0 for 𝑥𝑗 <  𝑧𝑠, 𝑗 > 1. 

Notably, for 𝑥𝑗 ≥  𝑧𝑠we can write (2.6)  𝑋̂𝑗 ∶= 𝑥𝛿 ⋅ 𝑉, with 𝑥𝛿 = 𝑥𝑗𝜀𝑗  𝑚(𝑥1). 

We also observe that choice of a large flex-point 𝑧𝑓 (beyond the largest observation 𝑥1 

in the dataset) and identical 𝜎1 = 𝜎0 leads to constant 𝑚(𝑥1) = 𝑚1 = 𝜎1 = 𝜎0. This 

allows us to generally assume use of a flex-function in the following section. 

3. Adapting concepts to special cases and requirements 

In section 3.1 we explain how to adapt the concepts of sec. 2 when non-negativity of 

the perturbed data is a requirement to be guaranteed. When on the other hand variables 

may take positive, as well as negative values, users of the packages have the option to 

allow, or not to allow changes of sign due to the perturbation. See sec. A.1.1 in the 

appendix for a short discussion of the options. Another special facility of the 

implementations is an option to increase the random noise by adding a fixed amount 𝜇 

to the random factor when protecting sensitive cells, in particular in the case of data 

where cell sensitivity is assessed by concentration rules as suggested in Giessing 

(2012). Using such an extra protection option, the disseminator can enforce that the 
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perturbed results are a fixed, “safe” distance away from the true cell value for sensitive 

cells4. Details of the implementation are explained in section A.1.2 in the appendix. 

3.1 Dealing with non-negativity restrictions 

In the case of positive variables, that is, if positivity should be ensured for the 

perturbed sum  𝑋̂ = 𝑥 + ∑  𝑋̂𝑗𝑗=1,…,𝑡𝑜𝑝𝐾    5 from (2.4), we suggest to organize 

computation of the 𝑇𝑜𝑝𝐾 perturbation values 𝑣𝑗 , 𝑗 = 1, … , 𝑇𝑜𝑝𝐾 sequentially, starting 

with perturbation value 𝑣1. The idea is to ensure first positivity of 𝑋̂(1) ∶= 𝑥 + 𝑋̂1, and 

then of 

(3.1) 𝑋̂(𝑗) ∶= 𝑋̂(𝑗−1) + 𝑋̂𝑗  for 𝑗 = 1, … , 𝑇𝑜𝑝𝐾. 

Because of (2.1) and (2.2) , in the first step for 𝑗 = 1 , for not too small 𝑥1 (i.e. above 

separation point  𝑧𝑠) we have∶ 

(3.2) 𝑋̂(1) = 𝑥 +∙ 𝑥1 𝑚(𝑥1) ∙ 𝑣1 ∙ =(∑ 𝑥𝑖 
𝑛
𝑖=1 ) +∙ 𝑥1 𝑚(𝑥1) ∙ 𝑣1 which can be written as 

𝑋̂(1) =  𝑥 + 𝑥𝛿 ∙ 𝑣1 with 𝑥𝛿 ∶= 𝑥1 𝑚(𝑥1). With a sensible choice of the parameter 

function  𝑚(𝑧) (in particular: parameter 𝜎1), usually we will have 𝑥𝛿 ≤ 𝑥. Otherwise 

we set 𝑥𝛿 ∶= 𝑥. 

Sec. 4.2 introduces a method to construct a suitable random variable 𝑉 we assume to 

have variance 1 and how to “draw” from it a realization 𝑣1, such that 𝑥 + 𝑥𝛿 ∙ 𝑣1 is 

non-negative, if 𝑥𝛿 ≤ 𝑥. This method can thus be applied in the cases 𝑥1 ≥  𝑧𝑠. 

In the case 𝑥1 <  𝑧𝑠 we obtain 𝑋̂(1) =  𝑥 + 𝑢 (c.f. (2.4). How to deal with this 

“separation case” is explained in sec. 4.2. 

In step 𝑗, 𝑗 > 1 for 𝑥𝑗 above separation point  𝑧𝑠 because of (3.1) and (2.1) we have∶

 𝑋̂(𝑗) = 𝑋̂(𝑗−1) + 𝑥𝑗  𝜀𝑗  𝑚(𝑥𝑗)𝑣𝑗 . We could express this as 𝑋̂(𝑗) =  𝑋̂(𝑗−1) + 𝑥𝛿 ∙ 𝑣𝑗 with 

𝑥𝛿 ∶= 𝑥𝑗  𝜀𝑗𝑚(𝑥𝑗). But 𝑋̂(𝑗−1) (i.e. 𝑥 after perturbation step 𝑗 − 1) could be very small. 

On the other hand, we generally assume step 𝑗 − 1 more important as step 𝑗 (assuming 

higher disclosure risk for contribution 𝑥𝑗−1). So, if the perturbed value 𝑋̂(𝑗−1) is 

already very small, we consider it acceptable to require only minimal further 

perturbation. Therefore we set 𝑥𝛿 ∶= min (𝑥𝑗 𝜀𝑗  𝑚(𝑥𝑗); 𝑋̂(𝑗−1)) . This makes 𝑥𝛿 ≤

𝑋̂(𝑗−1) and allows to apply the techniques of sec. 4.1. 

In the case 𝑥𝑗 <  𝑧𝑠 , according to (2.4) we let 𝑋̂(𝑗) =  0. 

                                                 
4 For the p%-rule, (Giessing, 2012) argues a choice of 𝜇 ∶= 2𝑝 for the extra noise amount. 
5 Notably, a similar issue may arise even with mixed positive/negative variables, i.e. when changes of 

sign due to perturbation should be avoided, see sec. A.1.1 in the appendix. 
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4. A generalization of the CKM method for continuous variables 

In this section we present an idea for generalizing the maximum entropy based noise 

design method implemented in the package R package ptable to the case of continuous 

variables. To this end a slight extension of the package is needed, but no fundamental 

changes have to be implemented. 

In section 4.1 we briefly recall the structure of the output of the current version of the 

ptable package and how an actual perturbation determined in the so called lookup step 

of the cell key method. Section 4.2 explains the changes that have to be made in order 

to adapt the procedure, originally designed for count tables, to the case of magnitude 

tables. In section 4.3 we present additional functionality to improve protection against 

disclosure risks in certain cases with small observation values. For better readability 

throughout the entire section we only consider positive magnitudes. 

 

4.1 Recalling the implementation of the perturbation table lookup 

As explained in section 2, the cell key method relies on some kind of random noise 

that is added to the actual data. In the simple case of count tables this can be expressed 

as 𝑋̂ = 𝑥 + 𝑣, where 𝑥 is the original cell value, 𝑣 is some random noise and 𝑋̂ is the 

perturbed value that will be published. Now 𝑣 depends both on the original value 𝑥 

and the corresponding cell key 𝑧 which is a random number between zero and one, c.f. 

(Giessing et al. 2018, appendix 1). Thus actually we can write 𝑣(𝑧, 𝑥). Now for the 

same combination of 𝑧 and 𝑥 the noise 𝑣 will always be the same, ensuring 

consistency among logically identical tables. In order to determine 𝑣(𝑧, 𝑥) a 

perturbation table, supplied by the ptable package, is needed. Such a perturbation 

table, also referred to as “lookup table”, consists (amongst others) of columns named 

“kum_p_u”, “kum_p_o”, “i” and “diff”. Here the last two consist of integer values 

only. Column “i” represents a reference value for the original value 𝑥, while 

“kum_p_u” and “kum_p_o” are a reference values for the cell key 𝑧. Now we define 

𝑣(𝑧, 𝑥) as that value to be found by the so called “lookup step” in the column “diff”, 

for the row where 𝑖 = 𝑥 and kum_p_u ≤ 𝑧 < kum_p_o. 

Note that the perturbation table is defined such that for every fixed value of “i” the 

corresponding rows of the perturbation table represent an inverse cumulative 

distribution function, so we actually apply the inverse transformation method. Using 

different distributions for smaller values of “i” is necessary to prevent changes of sign. 

 

 4.2 Main idea and structure of the perturbation table 
In the following we describe the changes that have to be executed in order to extend 

the general implementation, according to the method described in section 2. In short 

these are: 

 In favor of a finer gradation, perturbation values 𝑣 computed by ptable will not be 

limited to integers but to rational numbers instead. The distance between the 
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possible outcomes is given by 
1

𝑙
, where 𝑙 is a user defined number. This requires an 

extension of the format of the perturbation tables supplied by the ptable package. 

 It is not possible for any perturbation table to include the value of every possible 

original continuous cell value within a given range. Hence for any original value 

that is not part of the perturbation table we rely on an interpolation technique, 

explained later in this section. 

 In order to use different noise distributions for even and odd numbers of counts, as 

mentioned in the introduction, we propose to actually store two different 

perturbation tables beneath each other in on file,  adding an additional column to 

indicate which row belongs to which of those tables. 

To motivate the approach explained in the following recall the case of frequency 

tables. Let 𝑛 (𝑛 ≥ 1) some original cell value of a frequency table. Then the perturbed 

value 𝑁̂ is generated by 𝑁̂ = 𝑛 + 1 ⋅ 𝑉 = 𝑛 + 𝑛𝛿 ⋅ 𝑉, for some integer valued random 

variable 𝑉. Note, in this case we have 𝑛𝛿 = 1 ≤ 𝑛. 
 

Now, in case of continuous variables, disregarding the issue of extra protection for 

sensitive cells (sec. A.1.2 in the appendix) and assuming the case j= 1 6 and not too 

small 𝑥1 (i.e. above separation point  𝑧𝑠, see sec. 4.3 for the procedure for 𝑥1 <  𝑧𝑠), 

we obtain a perturbed value for original value 𝑥 = ∑ 𝑤𝑖𝑦𝑖
𝑛
𝑖=1  as  

𝑥̂ = 𝑥 + 𝑥𝛿 ⋅ 𝑉, 

with 𝑥𝛿 = 𝑥1 𝑚(𝑥1), and assuming 𝑥𝛿 ≤ 𝑥, when we have to deal with non-negativity 

restrictions (c.f. 3.1) 7. 

 

Let now the distribution of 𝑉 be symmetrical and let 𝐷 denote the maximum 

perturbation value of 𝑉. In case of continuous table values, of course 𝑉 does not have 

to be integer valued. Hence we are free to choose 

 

𝑉 ∈ { −𝐷,
1

𝑙
− 𝐷,

2

𝑙
− 𝐷, … , 𝐷 −

1

𝑙
, 𝐷}   ., 

 

where 𝑙 is a user defined number, like 4, 8, 10, 100, 1000. 

 

One has to consider that for small original values a perturbation amounting to 𝑥𝛿 ⋅ 𝑉 

might lead to a change of sign, if for example 𝑉 = −𝐷 and that usually this is not 

wanted by the user. Thus in case of small original values a skewed distribution of 𝑉 is 

required, such that the maximum magnitude of 𝑉 stays 𝐷, while the minimum 

magnitude is 
−𝑥

𝑥𝛿
 or larger. This is equivalent to the case of frequency tables, where for 

                                                 
6 For the case 𝑗 > 1, see sec. 3.1 for how to determine 𝑥 and 𝑥𝛿  
7 C.f. sec. A.1.1 in the appendix, case (1), for how to proceed when there are no non-negativity 

restrictions. 
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𝑛𝛿 = 1 the ptable package for each 𝑛 =
𝑛

𝑛𝛿
∈ ℕ with 𝑛 ≤ 𝐷 automatically creates a 

skewed distribution such that −𝑛 ≤ 𝑛𝛿 ⋅ 𝑉 and thus 𝑉 ≥ −
𝑛

𝑛𝛿
. Hence, when looking 

up the perturbation value, the original value 
𝑛

𝑛𝛿
 must be taken into account. 

Now clearly it is not possible to create and store a skewed distribution 𝑉 for each 
𝑥

𝑥𝛿
 

with 𝑥 ≤ 𝐷 (and 𝑥𝛿 ≤ 𝑥, as explained in sec. 3.1) such that 𝑉 ≥ −
𝑥

𝑥𝛿
, so we will not 

even bother to achieve this. Fortunately, since we are not restricted to integer values, 

linear combinations of perturbation values again are appropriate perturbation values. 

Therefore in practice it suffices to generate one distribution for 
𝑥

𝑥𝛿
≥ 𝐷 and one for the 

smallest value 
𝑥

𝑥𝛿
 can reach, which is 1 (again assuming 𝑥𝛿 ≤ 𝑥). Now for each value 

of 
𝑥

𝑥𝛿
 between 1 and 𝐷 the perturbation value can be obtained by combining those two 

distributions into a new mixed noise distribution. Note that such a combination will in 

general not be integer valued and thus this approach is not suitable for count tables. 

 

Illustrative example 

For an illustrative example, let 𝐷 = 3 be the maximum perturbation value and choose 

0.5 as the step width.  

Table 1 then shows the resulting perturbation table for a given preservation 

probability of 0.5 and a variance of 1. Note that preservation probabilities are a feature 

of the ptable package which allows the user to define the probability for a cell value 

not to change at all. Let now 𝑎 ≔
𝑥

𝑥𝛿
 be a value between 𝑎0 ≔ 1 and 𝑎1 ≔ 𝐷, i.e. 

𝑎0 < 𝑎 < 𝑎1. Then for λ =
𝑎−𝑎0

𝑎1−𝑎0
∈ (0,1) 𝑎 can be written as 𝑎 = (1 − λ) ⋅ 𝑎0 + λ ⋅

𝑎1. Now we define the perturbation value V(z, 𝑎) of magnitude 𝑎 and a given cell key 

𝑧 as the convex combination of the perturbation values V(z, 𝑎0) and V(z, 𝑎1), using 

that same parameter λ as described above, i.e. 

 

V(z, 𝑎) =  (1 − λ) ⋅ V(z, 𝑎0) + λ ⋅ V(z, 𝑎1) 

As an example we choose 𝑎 =
𝑥

𝑥𝛿
= 2.5 and let 𝑧 = 0.18 be the corresponding cell 

key. Since the largest value smaller than 𝑎 that is to be found in the perturbation table 

is 𝑎0 = 1 and the smallest value larger than 𝑎 is 𝑎1 = 3 we have λ =
2.5−1

3−1
= 0.75. 

Furthermore from Table 1 we get V(z, 𝑎0) = −1 and V(z, 𝑎1) = 0.5. Now by 

interpolation we obtain V(z, 𝑎) =  0.25 ⋅ (−1) + 0.75 ⋅ (−0.5) = −0.625. 
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4.3 Constant noise variance for very small observations 

If below some separation point  𝑧𝑠 > 0 a constant noise variance shall be implemented 

that does not depend on 𝑥1, and if there are non-negativity restrictions, we need a 

second perturbation table. From this second perturbation table which (according to 

sec. 2.1) should define noise distributions with noise variance 𝜎2
2 we obtain U(𝑧, 𝑥), 

i.e. relating to the original cell value 𝑥, instead of  𝑎 =
𝑥

𝑥𝛿
. 

Otherwise, if in that case there are no non-negativity restrictions, i.e. to implement 

case (1) of sec. A.1.1 in the appendix, we can look up a perturbation 𝑢̃ in any 

perturbation table for continuous values (for example in a perturbation table relating to 

a “standard” noise variance of 1) with desired step width and maximal perturbation, in 

the block of rows of that perturbation table relating to the symmetric case (i.e. in the 

last block of lines), irrespective of the value of 𝑥. Finally we multiply with the desired 

standard deviation (from e.g., (2.4)), f.i. we set 𝑢 ∶= 𝜎2 ∙ 𝑢̃, if 𝑢̃ relates to a 

perturbation table defining noise with variance 1.  

5. Summary and Final Remarks 

Funded by the EU project “Open Source tools for perturbative confidentiality 

methods” a cell key method useable not only for protecting frequency count tables by 

additive noise, but also for the protection of continuous variables has been 

implemented in the package τ-Argus and as separate R package cellKey. Like the 

perturbation method for continuous data of Thompson et al. (2013) implemented in the 

ABS table builder, we basically build on a multiplicative approach. A flex-function 

has been integrated to allow some flexibility of the noise variance coefficients which 

will have to be chosen by a disseminator to determine the strength of the perturbations. 

The main contribution of the work reported in this paper is a concept for convex 

combination of noise drawn from discrete noise distributions to generate noise for 

continuous data. The concept builds on a slight extension of the maximum entropy 

approach implemented so far to compute the transition matrices used as (discrete) 

distributions for the noise applied to frequency data. 

The paper also discusses alternative ways for how to handle specific issues, like non-

negativity restrictions for the perturbed data. Not a subject of the present paper, 

however, is advice and guidance how to choose parameters in a suitable way, i.e. 

balancing information loss and disclosure risk. This kind of work is envisioned as one 

of the tasks to be addressed by future projects. 
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Appendix A.1 

A.1.1 Variables with positive and negative contributions 

In this document, we basically consider three different ways of dealing with variables 

that may take positive, as well as negative values. Such variables might typically result 

from taking the difference of two initial positive variables, like the balance of people 

moving in and out of areas, or the difference between income observations for two 

subsequent years. 

Let 𝑥 an observation of a variable 𝑋 taking positive as well as negative values. Let 

𝑠𝑖𝑔𝑛(𝑥) ∶= 1, if 𝑥 ≥ 0 and −1 otherwise. 

We suggest implementing the following three variants: 

(1) In the lookup step, look up the perturbation 𝑣𝑗  in the block of rows of the 

perturbation table relating to the symmetric case (i.e. in the last block of lines), 

irrespective of the value of 𝑥 or 𝑥𝛿   (defined by formulas (2.5) and (2.6)). In 

particular: also in the case 𝑥 = 0 . Compute the perturbed value according to (2.1) 

or (2.5), resp.. 

(2) Do the lookup step like in case of variables taking only positive values, using the 

absolutes |𝑥| and |𝑥𝛿 | when applying the techniques of sec. 4.1 to obtain 

perturbation 𝑣 and finally multiply the perturbed value 𝑋̂ by 𝑠𝑖𝑔𝑛(𝑥). 

(3) Like (2); for |𝑥| ≥  |𝑥𝛿| . Like (1); otherwise, or, if changes of sign are considered 

very undesirable, using the technique of sec. 4.3. 

A.1.2 Extra protection for sensitive cells 

To enforce that perturbed results are a fixed, “safe” distance away from the true cell 

value for sensitive cells a user of the packages may request increased random noise 

when a sensitive cells should be protected, in particular in the case of data where cell 

sensitivity is assessed by concentration rules. In this case a fixed amount 𝜇 will be 

added to the random factor8. 

When integrating the extra protection into a noise factor concept based on top-kth 

observations with 𝑡𝑜𝑝𝐾 > 1 it makes sense to implement extra protection only into 

                                                 
8 For the p%-rule, Giessing (2012) argues a choice of 𝜇 ∶= 2𝑝 for the extra noise amount. 

http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2013/Topic_1_ABS.pdf
http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2013/Topic_1_ABS.pdf
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the first noise component 𝑋̂1 relating to the largest contribution to the cell to avoid 

differently directed extra protection components cancelling each other out, and not 

implementing it at all for very small observations below the separation point  𝑧𝑠. 

In the denotation of section 2, this means for 𝑥1 >  𝑧𝑠, we replace the noise component 

relating to the largest observation,∙ 𝑥1  ∙ 𝑚(𝑥) ∙ 𝑣1, by ∙ 𝑥1 𝑚(𝑥1) ∙ 𝑑1 ∙ (𝜇 + |𝑣1|) 

where 𝑑1 ∶= 𝑠𝑖𝑔𝑛(𝑣1). 

If there is a non-negativity restriction (c.f. sec. 3.1), in case of negative direction of the 

perturbation (i.e. 𝑑1 = −1) we should avoid that the extra protection amount 𝜇 leads 

to negativity. With denotation of sec. 3.1, integration of the extra perturbation means 

𝑋̂(1) = 𝑥 +∙ 𝑥1 𝑚(𝑥1) ∙ 𝑑1 ∙ (𝜇 + |𝑣1|)  ∙ (c.f. (3.2) )and can be written as 𝑋̂(1) =  𝑥 +
𝑥𝛿 ∙ 𝑣1+𝑑1 𝑥𝛿𝜇 with 𝑥𝛿 ∶= 𝑥1 𝑚(𝑥1),  the term 𝑑1 𝑥𝛿𝜇 relating to the extra protection. 

To ensure non-negativity we first compute 𝑣1 (with the techniques of sec. 4.1) such 

that 𝑥 + 𝑥𝛿 ∙ 𝑣1 is non-negative, and then we set 𝑋̂(1) ∶= max( 𝑥 + 𝑥𝛿 ∙ 𝑣1+𝑑1 𝑥𝛿𝜇; 0). 

A.1.3 Different noise distribution for even and odd number of contributions 

Ma et al (2016) discuss a specific risk scenario: The scenario is based on a case where 

perturbed figures for some continuous variable are released for table cell A relating to 

a certain group of respondents, as well as for another group (table cell B) that differs 

from the first group by only one respondent C. In that case, a user of the perturbed 

data could estimate the value of the variable for respondent C by differencing between 

the perturbed figures for cell A and cell B. If the probability is high for both, for the 

perturbed value of cell A and for the perturbed value of cell B to change by only a 

small amount, similar for cell A and cell B, the estimate for respondent C will be close 

to the true value with still a relatively high probability. In order to reduce this risk, Ma 

et al (2016) suggest using different noise distributions for cells with even and odd 

number of contributions (note, if cells A and B differ by only one respondent, the 

number of respondents will be even for either A or B, and odd for the other one). They 

suggest using a distribution 𝑈1 with low probabilities for small changes for, say, odd 

cells (i.e. cells with an odd number of contributions), and then 𝑈2 with high 

probability of small changes for the even cells. Like for example 𝑈1 a uniform 

distribution on the intervals 𝐼1 ∶= [−1.5; −0.5] ∪ [0.5; 1.5], and 𝑈2 a uniform 

distribution on the intervals  𝐼2 ∶= [−2; −1.5] ∪ [−0.5; 0.5] ∪ [1.5; 2] . 

Future versions of the ptable package might support this idea, supplying perturbation 

tables with such pairs of “complementary” distributions, if requested this way by the 

user of the package. See section 3.2 of Giessing et al. (2019) for a suggested data 

structure of such a “mixed” perturbation table. Section 3.3 of Giessing et al. (2019) 

explains how to implement the lookup step accordingly in the CKM tools. 
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Appendix A.2 

 

Table 1: Example for a perturbation table in case of continuous values with step width 

0.5 and maximal perturbation 𝐷=3. 

 

i j p kum_p_u kum_p_o diff 

0 0 1 0 1 0 
1 0 0.18078 0 0.18078 -1 

1 0.5 0.12789 0.18078 0.30867 -0.5 

1 1 0.50000 0.30867 0.80867 0 

1 1.5 0.06400 0.80867 0.87267 0.5 

1 2 0.04528 0.87267 0.91795 1 

1 2.5 0.03203 0.91795 0.94997 1.5 

1 3 0.02266 0.94997 0.97263 2 

1 3.5 0.01603 0.97263 0.98866 2.5 

1 4 0.01134 0.98866 1 3 

3 0 0.00850 0 0.00850 -3 

3 0.5 0.01719 0.00850 0.02570 -2.5 

3 1 0.03059 0.02570 0.05629 -2 

3 1.5 0.04788 0.05629 0.10417 -1.5 

3 2 0.06594 0.10417 0.17010 -1 
3 2.5 0.07990 0.17010 0.25000 -0.5 

3 3 0.50000 0.25000 0.75000 0 
3 3.5 0.07990 0.75000 0.82990 0.5 
3 4 0.06594 0.82990 0.89583 1 
3 4.5 0.04788 0.89583 0.94371 1.5 
3 5 0.03059 0.94371 0.97430 2 
3 5.5 0.01719 0.97430 0.99150 2.5 
3 6 0.00850 0.99150 1 3 


