

Disclosure control that accounts for survey realities: assessing the risk using G-Confid

www.statcan.gc.ca

Peter Wright
Methodology Branch

Presented to the UNECE work session on confidentiality

21 September 2017

Presentation

- Overview of G-Confid
- Modernizing G-Confid to treat
 - waivers
 - negative values
 - estimation weights
- PTN, a new framework
- Future directions

Overview of G-Confid version 1.06

- Generalized system programmed in SAS™
- Created at Statistics Canada (closed source)
- Licence is free since 2015
- Serves to ensure the protection of tabular magnitude data mainly for business surveys
 - PROC SENSITIVITY identifies sensitive cells
 - The SUPPRESS macro protects sensitive cells using iterative linear programming
- See Rondeau and Fillion (2011) for information

Overview of G-Confid: Proc Sensitivity

- Sensitivity rule (PQ or P%, NK, custom-made rule)
- Traditional linear sensitivity measure

$$S = \sum_{r=1}^{\infty} \alpha_r x_r \text{ where } 1 \ge \alpha_1 \ge \dots \ge -1$$

where the α_i values represent the rule.

• Example $(x_1 \text{ is the } target \text{ and } x_2 \text{ is the } suspect)$:

Let
$$\alpha_1 = \frac{p}{q}$$
 $\alpha_2 = 0$ $\alpha_3 = \alpha_4 = \dots = -1$

Then
$$S = \frac{p}{q} x_1 - 0x_2 - \sum_{r \ge 3} x_r$$

Modernizing G-Confid

- Initiatives must:
 - Improve the assessment of confidentiality
 - Respect increasing demands to publish more data
 - Reduce user burden
- Improvements involving three specific aspects of survey sampling:
 - Adjusting sensitivity in the presence of waivers
 - Processing negative values (mixed-sign variables)
 - Making use of estimation weights

Modernizing G-Confid: waivers

A waiver is a signed record of the respondent granting permission to publish its data. Waivers greatly help Statistics Canada to publish more data.

Old way:

- 1. G-Confid calculates the sensitivity, ignoring waivers.
- 2. (manual check) If the top two contributors supplied waivers then manually recode the sensitivity to zero.

Modernizing G-Confid: waivers

New way, PQ or P% rule:

1. If the largest contributor (or *target*) supplied a waiver. G-Confid changes its role to that of the *suspect*, and the second largest contributor becomes the *target*.

2. G-Confid calculates
$$S = \left(\frac{p}{q}\right) x_2 - \sum_{r \ge 3} x_r$$

(second-largest contributor)

Modernizing G-Confid: waivers

New way, **NK rule**: convert to the PQ rule.

G-Confid calculates:

1. the sensitivity ignoring waivers

$$S_0 = \left(\frac{100 - k}{k}\right) (x_1 + \cdots) - \sum_{r > N} x_r$$

2. the relative protection offered to the largest contributor $\left(\frac{p}{q} \right) = \frac{1}{x_1} \left(S_0 + \sum_{r > N} x_r \right)$

$$\left(\frac{p}{q}\right) = \frac{1}{x_1} \left(S_0 + \sum_{r>N} x_r\right)$$

the sensitivity to protect the largest contributor without a $S = \left(\frac{p}{a}\right) x_t - \sum_{r \neq t} x_r$ waiver (target t)

Modernizing G-Confid: negative values

- Several solutions have been proposed; see for example the FCSM (2005), Giessing (2008), and Daalmans and de Waal (2010)
- Starting with version 1.07, G-Confid users can choose from three options:
 - Absolute values at the level of the internal cells
 - Absolute values for all cells, including marginal cells
 - Use of a proxy variable (see next slide)

Intern	al cells		Marginal cells
	Marginal	cells	

Modernizing G-Confid: negative values

Tambay and Fillion (2013): assess the variable Z_i for sensitivity where

- X_i is a mixed-sign variable (e.g., profit)
- Y_i is a non-negative size variable (e.g., gross revenue)
- δ is a parameter defined on $0 \le \delta \le 1$

$$Z_{i} = \max\{|X_{r}|, \delta Y_{r}\}$$

Modernizing G-Confid: negative values

Examples of generating $Z_i = \max\{|X_r|, \delta Y_r\}$

Let $\delta = 0.05$ (chosen by the G-Confid user)

<u>Z</u>	Gross Revenue	<u>Profit</u>	Enterprise
$max(-20 , 0.05 \times 600) = 30$	600	-20	ABC Co.
$max(-50 , 0.05 \times 600) = 50$	600	-50	LMN Inc.
$max(30 , 0.05 \times 1500) = 75$	1500	30	XYZ Ltd.

$$S = \left(\frac{p}{q}\right)(75) - 30$$

Modernizing G-Confid: weights

- No obvious way to include weights when using the traditional linear sensitivity measure
- Old solution:

• Scalar value x_i captures limited information

PTN, a new framework

Gray (2016) proposed the Precision Threshold and Noise (*PTN*) framework.

Each contributor is represented by a vector:

- Precision Threshold (PT): the degree of protection that must be accorded to the contribution
- Self-noise (SN): the amount of protection provided by a suspect's own contribution
- Noise (N): the amount of protection offered by a contributor that is neither target nor suspect

PTN, a new framework (cont.)

PQ rule without weights

$$PT(r) \qquad SN(r) \qquad N(r)$$

$$px_r \qquad 0 \qquad qx_r$$

PQ rule with weights (assuming $w_r \ge 1$)

$$PT(r) SN(r) N(r)$$

$$px_r - f(x_r, w_r) q(w_r - 1)x_r qw_r x_r$$

where f increases as $w_r \uparrow$

(We can rescale by $\frac{1}{q}$)

PTN, a new framework (cont.)

Steps (using a PQ rule):

- 1. For the r^{th} contributor to a cell, calculate PT(r), SN(r) and N(r).
- 2. For every combination* of (t,s), calculate

$$S(t,s) = PT(t) - SN(s) - \sum_{r \neq t,s}^{n} N(r)$$

*Gray proposed a search-limiting algorithm

3. Identify the maximum value

$$S_{CELL} = \max\{S(t, s) | t \neq s\}$$

PTN, a new framework (cont.)

PTN permits multiple aspects of survey sampling to be represented.

PQ rule with weights, without or with waivers

$$PT(r)$$
 $SN(r)$ $N(r)$ $px_r - f(x_r, w_r)$ no waiver $q(w_r - 1)x_r$ $qw_r x_r$

where f increases as $w_r \uparrow$

Future directions

- Releasing v1.07 of G-Confid in October 2017
- Seeking innovative and user-centric approaches
 - to improve the assessment of sensitivity
 - to consider other aspects of survey sampling
 - to generate a more efficient suppression pattern
- Collaborating on methods and implementation
- Developing Random Tabular Adjustment
 - Stinner (Statistical Society of Canada, 2017)
 - Bayesian approach
 - Risk-utility assessment

For further information please contact

Pour plus d'information veuillez contacter

Peter.Wright2@Canada.ca

To order **G-Confid**, please contact

Pour commander **G-Confid** veuillez contacter

G-Confid@Statcan.gc.ca