How Fast Are Prices in Japan Falling?

Satoshi Imai
Chihiro Shimizu
Tsutomu Watanabe

Japan

AGENDA

- Background
- Findings
- Purposive vs Random
- Methodology1:Purposive Sampling
- Methodology2:Random Sampling
- Sampling error
- Conclusion
- Subsidiary finding

Background

Some argue that rate of deflation was too small in Japan

Rate of deflation in each year (last 15 years) around 1 percent

- Official CPI contains substantial upward bias?
 - Fuhrer et al.(2011)
 - Broda and Weinstein(2007)
 - Ariga and Matsui(2003)

Background

Purpose

- Investigate how much estimates of CPI inflation rate depend on the Methodology.
- Especially lower level Sampling Methodology

Approach

- 64 alternative sampling rules (Purposive Sampling)
 - Store sampling
 - Product sampling
 - Price sampling (Survey point, Sale regulation)
 - Region composition
- Purposive Sampling Random Sampling

Findings

Inflation rate 0.025 has $\pm 0.5\%$ 0.020 sampling errors 0.015 at 90% CI

(year-on-year based)

Findings

Figure 7: Sampling Errors by Item

Sampling errors

is various

through items

It shows
At the item level sampling errors may cause bias.

Purposive vs Random

SBJ employs Purposive approach

	Purposive	Random	
ltem	125 items	125 items	
	Collect according to sale quantity ranking	Sale quantity waited random sampling	
Product	Only products which matches to defined specification are allowed	All products which belongs to item category are allowed	

Purposive vs Random

Example from Table 1:Butter

Jul 1996 -Jan 2001	"Snow Brand Hokkaido Butter"		
Jan 2001 – present	200g. Packed in a paper container. Excluding non-salt butters.		

Item code	Descript ion	# of JAN codes (A)	# of JAN codes that meet the product specifications (B)	(B / A)	Fraction of sales for products that meet the product specification
1321	Butter	369	30	0.081	0.458

We conduct this kind of pre-treatment for 125 items

Methodology 1: Purposive Sampling

- ▶ 125 items over 200 outlets
- ▶ 64 different sampling simulations
 - Region : single region / six regions
 - Outlet : customer visits (1 or 3 month(s))
 - quantity sold (1 or 3 month(s))
 - Products : quantity sold (1 or 3 month(s))
 - (purposive specification pre-treated)
 - Specification :full list / positive only list
 - Sale duration :3 days / 8 days
 - Sale impute :backward / forward

Methodology2: Random Sampling

▶ 125 items over 200 outlets

sampling condition

Region : six regions

Outlet : random sampling waited

with customer visits (1 month)

Products : random sampling waited

with quantity sold (1 month)

(all products belonging to the category)

Sale duration :8 days

Sale impute :forward

Sampling error

Sampling error of item i

$$\delta_i(t) \equiv \sum_r \phi_r \left(n^{-1} \sum_{(o,j) \in A_{r,i}} \pi_{r,i,o,j}^{PS}(t) - n^{-1} \sum_{(o,j) \in B_{r,i}} \pi_{r,i,o,j}^{RS}(t) \right)$$

Sampling error at the aggregate level

$$\delta(t) \equiv \sum_{r} \omega_i \delta_i(t)$$

The central limit theorem

$$\sum_{i} \omega_{i} \hat{\delta_{i}} \xrightarrow{d} N \left(\sum_{i} \omega_{i} \mu_{i}, \sum_{i} \omega_{i}^{2} \sigma_{i}^{2} \right)$$

Conclusion

Inflation rate 0.025 has $\pm 0.5\%$ 0.020 sampling errors 0.015 at 90% CI

(year-on-year based)

Conclusion

Figure 12 shows Sampling error is wide even annual level (time interval 12)

For the future plan, We estimate convergence effect extending up to 500 items.

Figure 12: Sampling Errors for Different Time Intervals

Subsidiary finding

Thank you for all your attention.

Contact to:

s2.imai@soumu.go.jp
Satoshi Imai
cshimizu@reitaku-u.ac.jp
Chihiro Shimizu
watanabe@e.u-tokyo.ac.jp
Tsutomu Watanabe