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Abstract

Data collected by statistical agencies may contain inconsistences
caused by mistakes made during the acquiring, transcription and coding
process. The optimization problem arising when an statistical agency
must modify a microdata to guarantee that the records satisfy a set
of rules (known as edits) is approached in this article. Indeed, before
using a collection of data records to infer statistical properties of some
groups of responders, the agencies must check and possibly correct the
consistence of the collected data. To this end, the edits must be tested
on each record and whenever a record does not satisfied all the edits the
agency must determine the fields in the record to be modified, as well as
impute the new values. Among all the possible solutions, the statistical
agency is interested in finding one concerning with the minimum num-
ber of fields to be modified, thus leading a combinatorial optimization

1Prepared by Jorge Riera-Ledesma (jriera@ull.es) and by Juan-José Salazar-González
(jjsalaza@ull.es), and supported by the Spanish project TIC2002-00895 (“Ministerio de Cien-
cia y Tecnoloǵıa”).
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problem known as Editing-and-Imputation Problem. An Integer Linear
Programming model for the particular case in which the edits are linear
constraints is proposed, and solved through cutting-plane approaches.
The new proposals are compared to other previously published in the
literature and tested on benchmark instances. The overall performances
of the new algorithms succeeded in solving difficult instances with up
to 100 variables and 50 edits to optimality in about one minute of a
personal computer.

Keywords: Editing and Imputation, Integer Linear Programming.

1 Introduction

Data collected by statistical agencies may contain errors because questions have

been misunderstood by the respondents or mistakes have been made during the

transcription and coding process. Therefore, since it may be impossible to get

back to the original source, detection and correction of such errors becomes a

necessary task before start data processing, in order to improve the integrity

and quality of decisions made on the basis of this information. The task of

identifying records containing errors and the specific fields causing these errors

is known as the data editing problem, and the task of changing these fields in

order to correct the errors is known as imputation. Both are typically carried

out by experts in statistical agencies, thus consuming a large amount of their

resources. Therefore, producing automatic techniques which help these experts

with such a complex work becomes an interesting goal.

More precisely, the microdata collected by the agencies consists of a set of

records, each one containing the answers of a respondent to a set of queries.

Every value in a record is known as field, and it contains either a discrete

or a continuous value. Discrete values correspond to categorical queries (e.g.,

marital status), while continuous numbers correspond to quantitative queries

(e.g., weight). A microdata may contain both data types.
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To introduce the problem let us suppose to have n queries, indexed by a

finite set I := {1, . . . , n}. Each record a is a n× 1 vector, say a = [ai : i ∈ I],

whose component ai is an entry in field i provided by a respondent. The

correctness of a record is given by a set E of consistence rules known as edits.

This set is associated to a set PE of all potential valid records. Given a set

E of m edits, indexed by J := {1, . . . , m}, a record a is said to be valid (or

consistent) if a ∈ PE. For example, when the fields are continuous numbers

and the edits in E are m linear equations then PE is a polyhedron. If a record a

of a microdata is not valid according to the edit set, then the aim of the Editing

and Imputation Problem (EIP) is to modify the fewest possible items of data in

order to obtain a valid record by keeping the non-modified field values [4]. The

aim of this objective function is to preserve as much of the original information

as possible. However, the goal of the EIP is typically extended by considering

the minimization of the weighted number of fields to be changed to satisfy the

set of edits. In other words, a weight wi (i ∈ I) represents the confidence

in the value of field i, and it can be thought as a surrogate, under certain

assumptions, for the objective of maximizing the product of the probabilities

that a changed field is in error (see Liepins [9]).

This definition of the EIP is also named the Minimum Weighted Fields to

Impute problem and it can be formulated using a 0-1 variable xi and a variable

yi for all i ∈ I. The variable xi assumes value 1 if and only if the field i has

to be modified, and the variable yi represents the value of field i in the new

record. Then a formulation is the following:

min
∑
i∈I

wixi

subject to

y ∈ PE
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xi :=

{
1 if ai 6= yi

0 otherwise
for all i ∈ I. (1)

Lieping, Garfinkel and Kunnathur show by a reduction to the satisfiability

problem that EIP is a NP-hard problem in the strong sense. Many articles in

literature concern algorithms to automatically solve this optimization problem.

See, e.g., Kovar and Winkler [8] for a review on the literature.

Since the above model is not suitable to be solvable a mathematical pro-

gramming approach, several articles in literature [4, 5, 6, 10, 11] have considered

the following 0-1 integer Linear formulation:

min
∑
i∈I

wixi (2)

subject to

∑
i∈Ik

xi ≥ 1 for all k ∈ K (3)

xi ∈ {0, 1} for all i ∈ I. (4)

In this formulation K is a subset of a collection E∗ := E ∪ E ′, where E ′ is

an additional subset of edits that will be described latter. The edits in E are

called explicit edits and the edits in E ′ are called implicit edits. The set Ik ⊆ I

associated to edit k ∈ K represents the candidate set of fields to be modified

in order to satisfy this edit. Hence the constraint (3) imposes that at least one

of those fields must be modified if the current record a does not satisfy edit k.

Clearly K must contain the explicit edits failed by the record a and, in

fact, each optimal solution for EIP satisfies constraints (3) when K is only

this subset of constraints because they state that at least one of its fields

must be changed for every failed edit. However, Fellegi and Holt [4] observed

that not all solutions of model (2)–(4) are feasible solutions for EIP if K only
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contains the explicit edits failed by a (see [4, 11] for examples). Another

important contribution of Fellegi and Holt [4] is to give a full description of the

implicit edit set E ′, thus determining the complete edit set E∗, and to develop

a constructive algorithm to obtain such a set. Another important result of

this work is the definition of the essentially new edit set, which is a minimal

subset of implicit edits to guarantee that a solution of (2)–(4) is a EIP solution.

Nevertheless, a remarkable drawback of this method is that the generation of

the implicit edit set can grow exponentially with respect to the cardinality of

the original edit set.

Garfinkel, Kunnathur and Liepins [5] deal with the important combinato-

rial problem of generating the implied edits for MWFI with categorical data

in a more effective way, proposing a tree-traversal procedure. Since the set

of generated edits can still be too large, they also propose a cutting-plane

algorithm which at each iteration solves model (2)–(4) with some additional

constraints and generates a missing implied edit (if any exists). Computational

experiments using both algorithms are shown on instances with |I| = 27 and

|J | = 21. The above cutting-plane algorithm is extended by the same authors

to continuous data in Garfinkel, Kunnathur and Liepins [6]. An important as-

sumption in this work is that the edits are linear constraints, thus the implied

edits turn to be surrogate constraints from the explicit edits. As in [5], the

iterative algorithm in [6] solves a set-covering problem at each iteration and

possibly a new implied edit is generated to cut-off the current integer solution of

the set-covering problem. The algorithm for continuous data is computational

tested on instances with |I| = 18 and |J | = 12. On the same idea, Ragsdale

and McKeown [11] propose some variants of this iterative mechanism by con-

sidering two 0-1 variables x+
i , x−i and the additional constraint x+

i +x−i ≤ 1 for

each field i, solving randomly generated instances with |I| = 50 and |J | = 20.
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In all these proposals, an integer program must be solved to optimality at each

iteration and the overall iterative procedure tends to be quite consuming time

in practice.

Our contribution in this article is to describe new close-related approaches

with better performances in practice. Section 2 presents a simple algorithm

for categorical and continuous data. This algorithm follows a scheme similar

to the cutting-plane algorithm proposed in [5], and it differs on the set of gen-

erated cuts. Another algorithm, closely related to the one proposed in [6] for

continuous data and linear edits, is also presented in this article. The new algo-

rithm has the advantage that the cuts can be generated also from non-integer

solution of the set-covering problem, thus only a linear program must be solved

at each iteration. However, if the final solution satisfying all the (explicit and

implied) edits is non-integer, the approach follows a branch-and-bound scheme

in order to achieve integrability of the variables, and the cutting-plane genera-

tion is applied at each node of the branch-decision tree. The whole procedure

is a so-called branch-and-cut algorithm. The underlying mathematical model is

presented in Section 3 and the branch-and-cut algorithm is described in Section

4. The paper finishes with an extensive computational analysis in Section 5 in

which the different approaches are compared on randomly generated instances

from the literature.

2 General algorithm

We discuss here an approach that can be applied to mixed data (i.e., with

categorical and continuous fields) and general edits. It is similar to the cutting-

plane algorithms described in Garfinkel, Kunnathur and Liepins [5, 6] and

summarized as follows:

Step 0: Let K ⊆ E be the set of explicit edits not satisfied by the record a;
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Step 1: Let x∗ be the optimal integer solution of the set-covering model (2)–

(4);

Step 2: Check whether there exists a record y satisfying the edits with yi = ai

when x∗i = 0 for i ∈ I. If such record does exist, then stop the procedure:

x∗ is the optimal solution of the problem. Otherwise, add the constraint
∑

i:x∗i =0 xi ≥ 1 to K in the the set-covering problem (2)–(4), and go to

Step 1.

This procedure iteratively strengthen the set-covering problem with addi-

tional constraints, one at each iteration. Each iteration consists of checking

whether the current solution x∗ guarantees the existence of a valid record y

(i.e., y ∈ PE) such that yi = ai when x∗i = 0, generating a cutting-plane in-

equality when the non-existence is proved. Since the cutting-plane inequality

is not satisfied by x∗, this procedure computes a different solution of the re-

stricted set-covering problem in the next iteration. Each inequality imposes

that a new field not currently present in the solution must be modified in the

next iteration.

The above-described mechanism is based on two ingredients: a set-covering

problem solver and a procedure to check whether a subset of PE is empty or

not. Even if the set-covering problem is a difficult problem, there are in the

Operational Research literature many approaches to it. The second procedure

is more undefined, as it strongly depends on the data and the edits. For

continuous data and linear edits the check can be easily done by, e.g., solving

a linear programming model in accordance with the Farkas’ Lemma (see, e.g.,

Schrijver [13]). In case of categorical data, the feasibility test can be a NP-

hard problem (e.g., when the correct records are the integer solutions of the

polyhedron defined by the edits), but still an enumerative search of all the

possibilities could be feasible in practice.
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Because the cutting-plane inequality generated at each iteration is not sat-

isfied by the current solution x∗, this constraint (called cut) is new and must

be added to the current set-covering problem. Nevertheless, previous intro-

duced cuts can become not relevant, or even dominated by the new cut. This

happens, for example, when the set Ik ⊂ Il for k > l. Then the cut introduced

in the l-th iteration can be removed. Also other non-dominated constraints

should be removed from the set-covering problem to keep a reasonable number

of constraints in it, but probably these non-dominated constraints must be

memorized in a cut-pool structure to be examined before entering in the fea-

sibility phase. If a violated constraint in the cut-pool is found, then it should

be introduced in the set covering problem and the time of the feasibility check

is saved.

When compared with other similar algorithms, as done in Section 5, our

proposal has the advantage of easily generating a violated cut for an incorrect

pattern x∗ without determining the implied edits. Still, it has the disadvan-

tage of this type of algorithms, in which an integer model must be solved to

optimality at each iteration, thus tending to generate a lot of equivalent in-

correct solutions before finding a correct optimal one. For the particular case

of continuous data and linear edits, this difficulty can be avoided by applying

the cut generation to also non-integer solutions, as it is presented in the next

sections.

3 Mathematical Model

The aim of this section is to present better models for EIP of microdata com-

posed by continuous numbers and where the edits are described by linear in-

equalities. From now on, we shall assume that each field value ai is a continuous

number in a known interval [lbi, ubi]. Moreover, we shall also assume that the
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explicit edit set E is given by a collection of linear constraints, and therefore

it can be represented by a linear system My ≤ b, where M is a m× n matrix

and b is a m×1 vector. Whenever more detail is needed, the linear system will

be represented by
∑

i∈I mijyi ≤ bj for all j ∈ J , where J is the index set of the

explicit edits. Without lost of generality, we will assume that lbi ≤ ai ≤ ubi

for all i ∈ I, and Ma 6≤ b. Under these assumptions, the set of valid records

PE is given by the points of the polyhedron

PE := {y : My ≤ b, lb ≤ y ≤ ub}.

We now present a new mixed integer linear model for EIP which has the

advantage of exploiting the bounds [lbi, ubi] to link a 0-1 variable xi and a

continuous variable yi for each field i to produce a set of constraints more

compact than the SCP model. Variable xi assumes value 1 if and only if the

field must be modified, and yi is the modified value. Then an integer linear

programming model is:

min
∑
i∈I

wixi, (5)

subject to

∑
i∈I

mijyi ≤ bj for all j ∈ J (6)

ai − (ai − lbi)xi ≤ yi ≤ ai + (ubi − ai)xi for all i ∈ I (7)

xi ∈ {0, 1} for all i ∈ I. (8)

Constraints (6) ensure that the corrected record y is in the valid set PE, and

constraints (7) guarantee that the field i is not modified unless xi = 1.

The model (5)–(8) is a simple way of writing the first non-linear model

described in Section 1 and pointed in, e.g., Garfinkel Kunnathur and Liepins

[6]. The key point for the new model is the assumption of having the external
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bounds lbi and ubi defining the interval [lbi, ubi] of potential values yi for each

field i ∈ I, which is not a rare assumption. Indeed, the new model remains valid

even when lbi is very small and ubi is very big. What is more, as also pointed

and used in [6], typically one knows that yi is a non-negative number, thus

lbi = 0 is a realistic assignment. The advantage of model (5)–(8) is to fit into

the Mixed Integer Linear Programming (MILP), and the today state-of-the-

art of Mathematical Programming provides powerful tools to solve this type

of models. The next section illustrates this claim describing a branch-and-cut

approach.

This problem was shown to be an NP-hard problem in the strong sense in

Garfinkel, Kunnathur and Liepins [6], but using the new model (5)–(8) we can

alternatively find a more simple proof. Indeed, any instance of the set-covering

problem can be easily formulated as a particular model (5)–(8). As a result,

one cannot expect to find an efficient (i.e., running in polynomial time in the

size of the record) approach, but still the problem must be solved and the next

section describes a way of addressing the problem. Section 5 discusses the

effectiveness of the approach on solving randomly generated instances.

An important feature of model (5)–(8) is that it can be easily extended to

work also on some discrete data. Indeed, if ai is an integer number in a known

interval [lbi, ubi] (which is the case when i represents, e.g., the sex of a person,

thus ai ∈ {0, 1}) and if the edits can be written as linear constraints, then the

model (5)–(8) with the additional constraint “yi integer” is still a MILP model

valid for the EIP on these data and edits.

A relevant disadvantage of model (5)–(8) is that in many practical situations

the values lbi and ubi are big numbers, thus creating ill-conditioned problems.

An immediate procedure to solve it is to apply a general-purpose software

for Mixed Integer Linear Programming models. Nevertheless, the existence
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of the external bounds lbi and ubi is a bad ingredient for solvers based on

continuous linear programming relaxations (this is empirically confirmed by

our experiments) and therefore one has to develop tricks to skip from these

numerical difficulties. An example of these tricks is the branching rule. Indeed,

in the problem the classical binary scheme of choosing one field i and creating

to subproblems, one by fixing xi = 0 and another by fixing xi = 1, could create

wrong solutions due to the tolerances. A better branching rule is to choose a

field i and create to subproblems, one by fixing yi = ai and another by fixing

xi = 1. In theory the two rules are the same but in practice, due to the finite

precision of computers, they are different. Still, a more-elaborated technique

is necessary, and this is covered in the next section.

4 Branch-and-Cut algorithm

Since the model (5)–(8) is a Mixed Integer Linear Programming model, one can

alternatively apply Benders’ Decomposition (see, e.g, [13]) to solve it. Briefly,

this method consists of iteratively solving a master problem defined only by

the binary variables and whose set of constraints is enlarged at each iteration

by solving a subproblem defined by the continuous variables. See, e.g., Shrijver

[13] for details. At first glance, there is not advantage on using this alternative

approach since it requires solving a sequence of smaller problems, possibly in a

large number. Nevertheless, the good news is that the constraints generated by

solving the subproblems can be strengthened for this problem, and therefore the

new approach can provide better linear relaxation than using directly the MILP

model. Moreover, another advantage is that this decomposition technique does

not deal with large bounds and decision variables in the same problem, which

typically creates ill-conditioned problems in numerical analysis. This issue will

be latter discussed. Let us now describe the procedure in detail.
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Suppose we are given with a vector x∗ = [xi : i ∈ I]. For simplicity,

we will assume that x∗i ∈ {0, 1}, even if we will observe that this integrality

requirement can be relaxed and the procedure be also applied with a minor

modification to work on non-integer vectors. We are interested in checking if

the polyhedron

PE(x∗) :=

{
y :

∑
i∈I

mijyi ≤ bj, j ∈ J ; ai−(ai−lbi)x
∗
i ≤ yi ≤ ai+(ubi−ai)x

∗
i , i ∈ I

}

is empty or not. If yes, then the pattern x∗ is a feasible solution for the

EIP. Otherwise, there is something wrong with x∗ and we are interested in

deriving a linear inequality cutting off this infeasible solution but not any

feasible solution for the EIP. If we have a procedure to generated such inequality

from a vector x∗ when it exists, then it means that we already have a cutting-

plane scheme to find an optimal solution x∗ for EIP by simply calling the

procedure iteratively. The kernel problem of finding this inequality violated

by a given x∗ or prove that such inequality exists is called separation problem,

while the problem of solving the problem of finding the new vector x∗ with the

generated inequalities is called master problem. Because the master problem

looks for integer solutions then, typically, a branch-decision scheme is required

and the whole procedure to solved is called branch-and-cut algorithm. This is

a modern technique for solving hard combinatorial optimization problems that

have been successfully used in many real-world applications. See, e.g., Caprara

and Fischetti [3].

For the EIP it is quite immediate to solve the separation problem by ap-

plying Farkas’ Lemma (see, e.g., [13]) on PE(x∗). In fact, this polyhedron is

non-empty if and only if

∑
j∈J

αjbj +
∑
i∈I

βi(ai + (ubi − ai)x
∗
i )−

∑
i∈I

γi(ai − (ai − lbi)x
∗
i ) ≥ 0 (9)
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for all direction of the cone:

CE := {(α, β, γ) : MT α + β − γ = 0, α ≥ 0, β ≥ 0, γ ≥ 0}.

By simple operations on (9) we get a valid inequality of a feasible pattern x as

follows: ∑
i∈I

[βi(ubi − ai) + γi(ai − lbi)]xi ≥ αT (Ma− b). (10)

Because βi, γi, ubi − ai, ai − lbi are non-negative numbers and because xi must

be 0 or 1, then it is possible to strengthen these constraints by rounding down

a left-hand side coefficient to the right-hand side whenever it is bigger. As

reported in the next section, our computational experiments proved that this

strengthening is very effective for the success of the approach.

In conclusion, the alternative model for EIP on continuous data and with

linear edits is given by (5) subject to (10) for all (α, β, γ) of CE.

Observe that in the particular case of small values of lbi and large values

of ubi, the strengthening operation produces the following set covering con-

straints: ∑

i∈I′
xi ≥ 1

where I ′ is the set of field indices with a dual variable βi or γi at a positive value,

which is equivalent to the field indices with non-zero value in the array MT α.

This is a quite interesting observation since the obtained inequalities coincide

with the inequalities generated by the method proposed by Garfinkel, Kun-

nathur and Liepins [6]. Still, an improvement of the above-proposed approach

is that it can be also applied when x∗i are non-integer solutions, which make the

approach quite suitable to work in a branch-and-cut framework. Indeed, x∗ is

a parameter during the application of the Farkas’ Lemma, and therefore it can

also be applied when x∗ is a non-integer vector. This implies that the branch-

and-cut algorithm does not need to produce an integer solution of a relaxed
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model before solving the separation procedure, since it can also be defined

from fractional solution of linear programming relaxations. This observation

allows cutting off infeasible solutions without going deep in branch-decision

trees. Nevertheless, fractional solutions can define separation problems which

do not generate cuts, and then the branching phase of the whole procedure

must be applied.

We now address how to manage the large amount of constraints (10). Ob-

viously, we only need to impose these constraints for the extreme directions

of CE, but still they are in a so large amount that one cannot expect to solve

a 0-1 linear program with all of them. The good news is that we can replace

the resolution of such huge program by a sequence of medium-size programs,

generating a violated one from the current solution x∗ at each iteration. In-

deed, this scheme coincides with the one used in Garfinkel, Kunnathur and

Liepins [5, 6], but with the important advantage that now our approach does

not need to solve an integer program at each iteration because a most-violated

cutting-plane (if any) can be determined from a (possibly fractional) solution

of the linear relaxation. The way to do it for a given solution x∗ is by solving

the linear program:

min

{ ∑
j∈J

αjbj+
∑
i∈I

βi(ai+(ubi−ai)x
∗
i )−

∑
i∈I

γi(ai−(ai−lbi)x
∗
i ) : (α, β, γ) ∈ CE

}

If the optimal objective value of this linear program is non-negative, then

there is no violated inequality and therefore x∗ guarantee a valid record (i.e.,

PE(x∗) 6= ∅). Otherwise, the problem is unbounded and a direction (α∗, β∗, γ∗)

with negative objective function value defines a violated inequality (10) to be

considered. The procedure finishes when no violated inequality is identified

and the solution x∗ is integer. Because the number of extreme directions in

CE is finite then the iterative procedure will stop (in theory) with an optimal

solution.
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Our model can also benefic by strengthening the separated cutting-plane

inequalitoes, and also from the addition of other well-known inequalities useful

in this kind of models (e.g., cover inequalities, flow inequalities, Gomory cuts,

etc.). Also, as it is usually done in branch-and-cut algorithms, the management

of the cuts is very important in order to keep a reasonable linear relaxation to

be solved at each iteration. This is possible since not all the so far generated

cuts are useful at each iteration, and therefore they do not need to be in the

current linear program. Nevertheless, a cut-pool structure is convenient in

the algorithm to save previously generated cuts instead of simply deleting the

cut from the linear program. Indeed, in forthcoming iterations the removed

generated inequalities can turn to be violated (and therefore useful) again. We

do not go here into these important tricks, which are standards of modern

branch-and-cut algorithms. See, e.g., [13] for details.

Further improvements can be applied to strengthen some constraints (10).

Let
∑

i∈I′ δixi ≥ 1 be one of this inequalities. For the above considerations we

can assume that 0 < δi ≤ 1 for all i ∈ I ′. If the sum of all the coefficients

δi < 1 is also smaller than 1 then we can improve the inequality by rounding

down all the coefficient to an integer number, thus producing a set-covering

inequality. This consideration appeared to be speed up the whole algorithm

on our computational results.

Another classical way of speeding up the procedure is to generate more than

one violated cut (if any) at each iteration, and this is easily performed by re-

optimizing the subproblem on the cone CE after increasing the cost of the non-

basic variable with negative reduced cost that determined the unboundness of

the subproblem. In this way, other different directions can be generated in the

same iteration, and therefore the linear relaxation turns to be more complete

(i.e., with more implied edits) with each iteration and, hopefully, reduce the
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total number of necessary iterations.

An interesting remark is that all the separation problems share the same

feasible region CE, and they only differ in the objective function. Because each

separation problem is a linear program, by Duality Theory we can alternatively

solve the dual version which is a more compact program since the upper and

lower bound on the variables yi. A dual solution α∗ will automatically produce

the vector (α∗, β∗, γ∗) because β∗ := max{MT α, 0} and γ := max{−MT , 0}.

5 Preliminary Computational Experiments

To measure the effectiveness of our proposal compared with other previous

works, we have implemented several algorithms, using the general software

CPLEX 8.1 [7] as a framework for the mathematical models. In particular, we

have considered the following algorithms:

Algorithm 1: It is a classical branch-and-bound approach for the mixed in-

teger linear model (5)–(8), where the bound is computed by solving the

linear relaxation. Special considerations are necessary to reduce the ill-

conditioned numerical problems.

Algorithm 2: It is the cutting-plane algorithm described in Garfinkel, Kun-

nathur and Liepins [6], where an optimal integer solution of a set-covering

problem is computed at each iteration.

Algorithm 3: It is the modified version of Algorithm 2 proposed by Ragsdale

and McKeown [11] with double number of binary variables in the integer

program of each iteration.

Algorithm 4: It is the branch-and-cut algorithm described in Section 4 when

the separation problem is applied only on integer vectors x∗.

16



Algorithm 5: It is the branch-and-cut algorithm described in Section 4, which

is an improved Benders’ decomposition approach to solve model (5)–(8).

As described, Algorithm 5 exploits the fact that the separation problem

described in Section 4 can be also applied to non-integer vectors, which is not

considered in Algorithm 4. On the other hand, Algorithm 4 and Algorithm 2

share the fact that both solve the same separation problems, while they differ

in the master problems: Algorithm 2 solves a set-covering problem and Algo-

rithm 4 solves a more general integer program. Algorithm 3 is the variant of

Algorithm 2 introduced in [11], so we can measure the impact of the differ-

ences, and Algorithm 1 is the compact mixed integer model equivalent to the

Bender’s decomposition approach addressed by Algorithm 5.

Since there is not a benchmark collection of test-bed instances in the liter-

ature, we have conducted our experiments on three classes of instances. The

instances in Class I are randomly generated as described in Ragsdale and McK-

eown [11], which means:

• the number of fields is |I| = n = 50,

• the number of edits is |J | = m = 20,

• the weights are all identical (wi = 1 for all i ∈ I),

• the record values are uniformly generated in the interval [-100,+100], thus

lbi = −100 and ubi = 100 for all i ∈ I,

• the right-hand side bj where generated in the interval [0,1000],

• the elements mij are zero with probability 0.2, and the non-zero values

are generated in [1,20] with probability 0.3 and in [-20,-1] with probability

0.7.
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The generated records satisfying all the edits were removed, and the others

were classified according to the number of failed edits into five groups: [1, 4],

[5, 8], [9, 12], [13, 16] and [17, 20]. The random generator was executed until we

get five instances in each group, as done in [11].

Because of the small size of the previously described instances, we could not

obtain conclusive results, and therefore we have also generated a second class

of instances. The instances of Class II were identically generated as before but

with |I| = 100 and |J | = 40. Furthermore, we have generated three families

inside Class II by varying the range of the variable’s bounds in the intervals

[−103, 103], [−104, 104] and [−105, 105] respectively, to study the influence of

these bounds on the algorithm performances.

Finally, the instances in Class III are artificial instances supplied by US

Census consisting of 10,994 records with 17 fields and two set of edits. The

first set contains 136 edits of type:

dlbj ≤ ai

ak

≤ dubj for some i, k ∈ I(i < k) and j ∈ J,

in which dubj − dlbj take values between 10−1 and 107. The second set of edits

contains to two balancing edits of type:

ai + ak = al for i, k, l ∈ I.

All the algorithms were implemented by the same programmer in C++

programming language, and all the experiments were executed on a personal

computer Pentium 1500 Mhz under Windows XP. Tables 1–3 shows the com-

putational results on the instances of Classes I–III, respectively. Each line in

the Tables 1 and 3 represents the average results over five random instances,

while in Table 2 the average is given by the number of records given in column

#. The first column in Tables 1 and 2 and the second column in Table 3 gives

the range of failed explicit edits by the records. The first column in Table

18



3 represents the interval used to generate the bounds of each instance, thus

providing the three record families. Column Obj. is the (average) number of

records to be modified in an optimal solution. Column Nodes is the (average)

number of nodes explored in the branch-search tree of the algorithm, and Sec.

is the time in seconds of the personal computer consumed by the whole algo-

rithm. Column (10) gives the number of inequalities (10), which is close to

the number of separation problems solved, and Column Cliq. is the number of

clique inequalities (...) generated. Column Limit gives the ratio of the number

of instances solved to optimality within a time limit of 1 hour over all the trials.

Table 1 shows the computational results running Algorithms 1, 4 and 5 on

the instances in Class I. Algorithms 1 and 5 were both very efficient to solve

all the instances, while Algorithm 4 was not. Indeed, from our experiments

we observed that algorithms where the master problem is an integer program

tends to require a lot of iterations. This is because our instances have wi

and therefore there are a lot of infeasible solutions with the same objective

function, and the algorithm seems to required a different cut for eliminating

each one which, unfortunately, was obtained after solving a difficult (integer)

master problem. This behaviour was not observed when the separation problem

works on non-integer solutions, thus the (continuous) master problem can be

solved faster and the cut can be inserted earlier.

Table 2 tries to compare Algorithms 1 and 5 on more difficult instances. In

our experiments we get better performances by using Algorithm 5, specially on

solving instances with larger bounds. Indeed, when lbi and ubi are generated

in [−104, 104], Algorithm 1 did not solve the five instances in all cases, while

Algorithm 5 was always successful. The situation was worse for Algorithm 1 on

the third family of records and a large number of failed records, while this type

of instances seems even easier than the one in the previous class for Algorithm
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5.

A similar conclusion can be derived from Table 3, which again resulted to

be simple instances for our new proposals.

6 Conclusions

We have addressed the combinatorial problem of finding the fewest number of

fields to modified in a record to produce another record that satisfies a set of

edits. When the field values are continuous numbers and the edits are linear

equations we presented two integer linear programming models that exploits

the fact that imputation values are always inside known bounds. The first

model is a mixed integer model while the second is based on the Benders’

decomposition approach. We have described and tested approaches for solving

both models, observing the better performances of the second proposal on

difficult instances.
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Table 3: Average results on instances from Class III

Algorithm 1 Algorithm 5
# Obj. # Nodes Sec. (10) Cliq. # Nodes Sec.
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