
New Algorithms for the

Editing-and-Imputation Problem

Juan-José Salazar-González

DEIOC, University of La Laguna, Tenerife, Spain

jjsalaza@ull.es http://webpages.ull.es/users/jjsalaza

Joint work with Jorge Riera-Ledesma and Sergio Delgado-Quintero

UNECE Work session on Statistical Data Editing

INE (Madrid) October 20-22, 2003

Work partially funded by “Ministerio de Ciencia y Tecnoloǵıa”

(TIC2002-00895) and by “Instituto Canario de Estad́ıstica”

Outline of this presentation:

1. Introduction to the problem (notation, references, general

algorithms)

2. New Mixed Integer Linear Programming Model

3. Algorithms for solving the new model

4. Computational experiments on benchmark instances

5. TEIDE: a new software for categorical data

Introduction to the Editing-and-Imputation Problem (EIP):

• Let a be a record with n components indexed in I := {1, . . . , n}.
• Let E be a set of rules (named edits) indexed in J := {1, . . . , m}.

Let PE be the set of all possible records satisfying all edits in E, each one
called valid record. For a given x ∈ {0,1}n and a given a, let

PE(x, a) :=
{
y ∈ PE : yi = ai if xi = 0, for each i ∈ I

}

be a projection of PE in the space of the modifiable fields according to x.

6

-

i

j

PE

PE(x, a)
xi = 0 ⇒ yi = ai

xj = 1 ⇒ yj modifiable

Then the EIP is minimize
{
wTx : PE(x, a) 6= ∅ and x ∈ {0,1}n

}
, which is a

combinatorial optimization problem of type NP-hard in the strong sense.

Previous works:

• I.P. Fellegi, D. Holt,“A systematic approach to automatic edit and imputation”, Journal of the

American Statistical Association 71 (1976) 17–35.

• G. E. Liepins, “A rigourous and systematic approach to automatic data editing and its statistical

basis”, ORNL/TM -7126, 1980.

• J. Schaffer, “Procedure for solving the data-editing problem with both continuous and discrete

data types”, Naval Research Logistics 34 (1987) 879–890.

• R.S. Garfinkel, A.S. Kunnathur, G.E. Liepins, “Optimal imputation of errorneous

data: continuous data, linear constraints”, Operations Research 34 (1986) 744–751.

• R.S. Garfinkel, A.S. Kunnathur, G.E. Liepins, “Error location for errorneous data:

continuous data, linear constraints”, SIAM J. on Scientific and Stat. Computing 9 (1988) 922–931.

• P.G. McKeown, “A mathematical programming approach to editing of continuous survey data”,

SIAM Journal on Scientific and Statistical Computing 5 (1984) 785–797.

• C.T. Ragsdale, P.G. McKeown, “On solving the continuous data editing problem”, Com-

puters & Operations Research 23 (1996) 263–273.

• J. Kovar, W.E. Winkler, “Editing economic data”, working paper, 2000.

• R. Bruni, A. Sassano, “Logic and optimization techniques for an error free data collecting”,

working paper, University of Roma, 2001.

Old general algorithm:

Starting from Fellegi and Holt (1976), a commonly used methodology is:

Step 0: Let K ⊆ E be the set of edits not satisfied by the record a. Let x∗
be an optimal integer solution of the Set Covering Problem (SCP):

minimize
∑

i∈I

wixi (1)

subject to
∑

i∈Ik

xi ≥ 1 for all k ∈ K (2)

xi ∈ {0,1} for all i ∈ I, (3)

where Ik ⊆ I is the subset of fields involved in the edit k.

Step 1: If PE(x∗, a) 6= ∅ then stop (x∗ is an optimal EIP solution).
Otherwise, find a new violated implicit edit k′, add the constraint

∑

i∈Ik′
xi ≥ 1 (4)

to the constraint family (2), update x∗ with an optimal solution of the
new SCP and go to Step 1.

New general algorithm:

Inspired by previous works, we can propose the following general approach:

Step 0: Let K ⊆ E be the set of edits not satisfied by the record a. Let x∗
be an optimal integer solution of the Set Covering Problem (SCP):

minimize
∑

i∈I

wixi (5)

subject to
∑

i∈Ik

xi ≥ 1 for all k ∈ K (6)

xi ∈ {0,1} for all i ∈ I, (7)

where Ik ⊆ I is the subset of fields involved in the edit k.

Step 1: If PE(x∗, a) 6= ∅ then stop (x∗ is an optimal EIP solution).
Otherwise, add the constraint

∑

i∈I:x∗i=0

xi ≥ 1 (8)

to the constraint family (6), update x∗ with an optimal solution of the
new SCP and go to Step 1.

New mathematical model for continuous data and linear edits:

• Each component ai of the given record a is a continuous number in the
known interval [lbi,ubi], for all i ∈ I.

• Each edit can be written as a finite set of linear inequalities, thus

PE :=

{
y ∈ [lb1,ub1]× . . .× [lbn,ubn] :

∑

i∈I

mijyi ≤ bj for all j ∈ J

}

is a polytope, shortly denoted by PE = {y ∈ IRn : My ≤ b, lb ≤ y ≤ ub}.

Then the EIP can be formulated as a Mixed Integer Linear Programming
(MILP) problem:

minimize
∑

i∈I

wixi (9)

subject to
∑

i∈I

mijyi ≤ bj for all j ∈ J (10)

ai − (ai − lbi)xi ≤ yi ≤ ai + (ubi − ai)xi for all i ∈ I (11)

xi ∈ {0,1} for all i ∈ I. (12)

A similar MILP model with double number of variables:

As done by Ragsdale and McKeown (1996), it is possible to write a similar
model by considering two 0-1 variables associated to each field i:

x−i =




1 if yi < ai

0 otherwise
x+

i =




1 if yi > ai

0 otherwise.

Then the EIP is equivalent to:

minimize
∑

i∈I

wi(x
−
i + x+

i)

subject to
∑

i∈I

mijyi ≤ bj for all j ∈ J

ai − (ai − lbi)x
−
i ≤ yi ≤ ai + (ubi − ai)x

+
i for all i ∈ I

x−i , x+
i ∈ {0,1} for all i ∈ I.

The inequality x−i + x+
i ≤ 1 is unnecessary due to the objective function.

Still, all the ideas introduced for model (5)–(7) apply also to this extension.

FIRST algorithm for the new MILP model:

At a first glance, the model (9)–(12) can be given to a general-purpose MILP

optimizer performing a branch-and-bound scheme, like CPLEX developed by

ILOG (www.ilog.com), XPRESS-MP developed by DASHOPTIMIZATION

(www.dashoptimization.com), GLPK developed by GNU (www.gnu.edu), or

ABACUS with SOPLEX developed by ZIB (www.zib.de).

A classical disadvantage is that a LP-based optimizer must internally face

ill-conditioned mathematical operations due to constraints (11), leading to

numerical problems and wrong solutions. One can try to reduce the number

of this bad situations by appropriately turning the tolerance parameters, but

it is difficult to find good parameters for most of the EIP instances.

We can help the general-purpose solver by considering, for example, the ad-

hoc branching rule: if (x∗, y∗) is an optimal solution of a linear relaxation of

the MILP model (9)–(12), then we choose a variable xi with a non-integer

value x∗i and then we create two subproblems in the branch-decision tree by

imposing either xi = 1 or yi = ai.

Background in Duality Theory:

±

¸

µ
*

d1

dn

d2

d3

Á
b̄

±

¸

µ
*

d1

dn

d2

d3

U b̄

O

u

The Farkas’ Lemma (1894) says:

Given a set of vectors d1, . . . , dn and b̄ in IRm, then

• either there are non-negative numbers y1, . . . , yn such that

b̄ = y1d1 + · · · yndn,

• or there is a vector u in IRn such that

d1T
u ≥ 0, . . . , dnTu ≥ 0, and b̄Tu < 0.

In other words, denoting M̄ := [d1 · · · dn]:

“The polyhedron {y ∈ IRn : M̄y = b̄, y ≥ 0} has a solution if and only if all
the solutions u of the cone {u ∈ IRm : M̄Tu ≥ 0} satisfy also b̄Tu ≥ 0.”

[This result was also used by Garfinkel, Kunnathur, Liepins (1986)]

SECOND algorithm for the new MILP model:

By using the Farkas’ Lemma, PE(x∗, a) 6= ∅ if and only if
∑

j∈J

αjbj +
∑

i∈I

βi(ai + (ubi − ai)x
∗
i)−

∑

i∈I

γi(ai − (ai − lbi)x
∗
i) ≥ 0 (13)

for all the directions of the cone:

CE := {(α, β, γ) : MTα + β − γ = 0, α ≥ 0, β ≥ 0, γ ≥ 0}.

Therefore, a solution x is admissible (or feasible) if and only if it satisfies:
∑

i∈I

[βi(ubi − ai) + γi(ai − lbi)]xi ≥ αT (Ma− b) (14)

for all (α, β, γ) ∈ CE.

Step 0: Let us define a master problem as the set covering problem of Step
0 in the previous algorithms, and let x∗ be an optimal solution.

Step 1: If PE(x∗, a) 6= ∅ then stop (x∗ is an optimal EIP solution).
Otherwise, find an inequality (14) violated by x∗, add it to the master
problem, update x∗ with an optimal solution of the new master problem
and go to Step 1.

Implementing the SECOND algorithm:

Given a solution x∗, the problem in Step 1 of finding a violated inequality
(14), if any exists, is called separation problem and it is equivalent to

minimize
∑

j∈J

bjαj +
∑

i∈I

(ai + (ubi − ai)x
∗
i)βi −

∑

i∈I

(ai − (ai − lbi)x
∗
i)γi

subject to

MTα + β − γ = 0,

α ≥ 0, β ≥ 0, γ ≥ 0.

If the optimal objective value is negative then the optimal solution (α∗, β∗, γ∗)
defines a violated inequality (14) to be considered in the master problem.

Advantages of this Benders’ decomposition approach:

• The cut generation procedure can also be applied when x∗ is non-integer.

• Inequality (14) can be strengthened by rounding some coefficients.

• Other families of inequalities (cliques, Gomory,...) can be also added.

Clique inequalities: If xi′ + xi′′ ≥ 1 for all i′, i′′ ∈ S then
∑

i∈S xi ≥ |S| − 1.

Preliminary computational results:

Algorithm 0: Our new cutting-plane algorithm based on inequalities (8).

Algorithm 1: A general-purpose MILP optimizer on the model (9)–(12).

Algorithm 2: The cutting-plane algorithm described in Garfinkel, Kunnathur
and Liepins (1988).

Algorithm 3: The cutting-plane algorithm described in Ragsdale and Mc-
Keown (1996).

Algorithm 4: Our branch-and-cut algorithm where only integer solutions x∗
are separated, which turns to be a new cutting-plane algorithm based
on inequalities (14).

Algorithm 5: Our branch-and-cut algorithm when the separation problem
is solved on integer and non-integer solutions x∗.

All implementations done by the same human programmer, using the C++
programming language on a personal computer Pentium 1500 Mhz running
Windows XP. CPLEX 8.1 was used as MILP optimizer. Time limit: 1 hour.

Benchmark instances:

Class I: They are the instances used in Ragsdale and McKeown (1996).
Hence, |I| = n = 50, |J | = m = 20, wi = 1 for all i ∈ I, ai ∈ [−100,+100],
bj ∈ [0,1000]; mij are zero with probability 0.2, in [1,20] with probability
0.24 and in [-20,-1] with probability 0.56. We set lbi = −100 and ubi =
100 for all i ∈ I. The FORTRAN code of the random generator was
kindly provided by Cliff Ragsdale.

Class II: They are exactly as before but with |I| = 100 and |J | = 40.
We have considered three families by also considering different intervals
[lbi,ubi] in [−103,103], [−104,104] and [−105,105].

Class III: They are artificial instances kindly supplied by William Winkler
and Maŕıa Garćıa (US Census of Bureau) consisting of 10,994 records
with 17 fields and two set of edits. The first set contains 136 edits like

lj ≤
yi′
yi′′

≤ uj for some i′, i′′ ∈ I(i′ < i′′) and j ∈ J,

in which each uj − lj takes a value between 10−1 and 107. The second
set of edits contains to two balancing edits like

yi′ + yi′′ = yi′′′ for some i′, i′′, i′′ ∈ I.

Average results on five instances from Class I:

Algorithm 1 Algorithm 5
Failed # Obj. Cuts Nodes Time (14) Iter. Nodes Time
1-4 5 3.4 3.4 2.0 0.047 9.6 20.6 3.2 0.043
5-8 5 5.0 4.2 8.4 0.066 15.6 35.4 12.4 0.078
9-12 5 5.6 6.6 30.2 0.116 44.6 93.6 33.8 0.206
13-16 5 6.8 4.2 149.6 0.418 70.2 120.2 34.0 0.287
17-20 5 7.4 4.6 289.2 0.631 245.0 550.8 223.4 1.259

Algorithm 0 Algorithm 2 Algorithm 3 Algorithm 4
Failed Iter. Time Ok Iter. Time Iter. Time (14) Time
1-4 18.3 3 48.0 0.828 4.0 0.029
5-8 - 0 133.0 5.228 9.4 0.131
9-12 6.3 1 228.0 23.869 12.6 0.309
13-16 - 0 666.0 296.684 15.4 0.578
17-20 - 0 684.0 231.087 26.6 1.728

Average results on five instances from Class II:

Algorithm 1 Algorithm 5
[lbi,ubi] Failed # Obj. Nodes Time Ok (14) Nodes Time

1-8 5 6.4 926.4 6.2 5 1189.4 631.2 6.7
9-16 5 9.2 6297.4 27.7 5 1641.4 661.6 9.4

[−103,103] 17-24 5 10.0 9822.2 47.1 5 17816.0 4438.0 115.6
25-32 5 12.0 8752.8 53.1 5 14348.6 4170.2 88.1
33-40 5 12.4 6336.0 44.6 5 17275.0 3511.2 120.9

1-8 5 3.6 1389.2 17.7 5 138.8 122.6 1.0
9-16 5 5.0 25644.8 187.4 5 2254.6 1159.6 13.8

[−104,104] 17-24 5 5.6 149298.5 1595.9 4 13319.8 3199.4 92.0
25-32 5 5.8 93463.0 1011.3 4 19524.0 4104.2 127.2
33-40 5 6.8 232025.0 3063.8 4 87244.0 15334.6 1452.4

1-8 5 3.6 6501.8 54.0 5 100.4 67.8 0.6
9-16 5 4.8 96563.5 1366.0 4 1741.4 1930.4 14.4

[−105,105] 17-24 5 6.4 - - 0 2210.2 2536.2 17.0
25-32 5 6.6 - - 0 3868.6 4063.8 31.0
33-40 5 7.6 - - 0 7054.0 7621.0 57.2

Average results on instances from Class III:

Algorithm 1 Algorithm 5
Failed # Obj. Cuts Nodes Time Clique (14) Iter. Nodes Time
1-15 223 1.75 16.8 0.229 0.008 12.135 0.135 1.188 0.000 0.004
16-30 5384 2.91 69.5 0.673 0.016 15.996 0.297 1.331 0.001 0.005
31-45 4281 4.10 72.7 1.342 0.026 19.050 0.308 1.314 0.000 0.005
46-60 1018 5.28 70.7 3.949 0.037 36.357 0.315 1.356 0.000 0.006
61-75 87 6.20 62.0 8.034 0.046 62.207 0.287 1.471 0.000 0.005

