New Algorithms for the Editing-and-Imputation Problem

Juan-José Salazar-González

DEIOC, University of La Laguna, Tenerife, Spain jjsalaza@ull.es http://webpages.ull.es/users/jjsalaza

Joint work with Jorge Riera-Ledesma and Sergio Delgado-Quintero

> UNECE Work session on Statistical Data Editing INE (Madrid) October 20-22, 2003

Work partially funded by "Ministerio de Ciencia y Tecnología"
(TIC2002-00895) and by "Instituto Canario de Estadística"

Outline of this presentation:

1. Introduction to the problem (notation, references, general algorithms)
2. New Mixed Integer Linear Programming Model
3. Algorithms for solving the new model
4. Computational experiments on benchmark instances
5. TEIDE: a new software for categorical data

Introduction to the Editing-and-Imputation Problem (EIP):

- Let a be a record with n components indexed in $I:=\{1, \ldots, n\}$.
- Let E be a set of rules (named edits) indexed in $J:=\{1, \ldots, m\}$.

Let \mathcal{P}_{E} be the set of all possible records satisfying all edits in E, each one called valid record. For a given $x \in\{0,1\}^{n}$ and a given a, let

$$
\mathcal{P}_{E}(x, a):=\left\{y \in \mathcal{P}_{E}: y_{i}=a_{i} \text { if } x_{i}=0, \text { for each } i \in I\right\}
$$

be a projection of \mathcal{P}_{E} in the space of the modifiable fields according to x.

$$
x_{i}=0 \Rightarrow y_{i}=a_{i} \underbrace{\substack{\mathcal{P}_{E}(x, a) \cdots}}_{x_{j}=1 \Rightarrow y_{j} \text { modifiable }} \begin{gathered}
\mathcal{P}_{E} \\
\ldots \ldots \ldots \ldots
\end{gathered}
$$

Then the EIP is minimize $\left\{w^{T} x: \mathcal{P}_{E}(x, a) \neq \emptyset\right.$ and $\left.x \in\{0,1\}^{n}\right\}$, which is a combinatorial optimization problem of type $\mathcal{N} \mathcal{P}$-hard in the strong sense.

Previous works:

- I.P. Fellegi, D. Holt, "A systematic approach to automatic edit and imputation", Journal of the American Statistical Association 71 (1976) 17-35.
- G. E. Liepins, "A rigourous and systematic approach to automatic data editing and its statistical basis", ORNL/TM -7126, 1980.
- J. Schaffer, "Procedure for solving the data-editing problem with both continuous and discrete data types", Naval Research Logistics 34 (1987) 879-890.
- R.S. Garfinkel, A.S. Kunnathur, G.E. Liepins, "Optimal imputation of errorneous data: continuous data, linear constraints", Operations Research 34 (1986) 744-751.
- R.S. Garfinkel, A.S. Kunnathur, G.E. Liepins, "Error location for errorneous data: continuous data, linear constraints", SIAM J. on Scientific and Stat. Computing 9 (1988) 922-931.
- P.G. McKeown, "A mathematical programming approach to editing of continuous survey data", SIAM Journal on Scientific and Statistical Computing 5 (1984) 785-797.
- C.T. Ragsdale, P.G. McKeown, "On solving the continuous data editing problem", Computers \& Operations Research 23 (1996) 263-273.
- J. Kovar, W.E. Winkler, "Editing economic data", working paper, 2000.
- R. Bruni, A. Sassano, "Logic and optimization techniques for an error free data collecting", working paper, University of Roma, 2001.

Old general algorithm:

Starting from Fellegi and Holt (1976), a commonly used methodology is:
Step 0: Let $K \subseteq E$ be the set of edits not satisfied by the record a. Let x^{*} be an optimal integer solution of the Set Covering Problem (SCP):

$$
\begin{equation*}
\operatorname{minimize} \sum_{i \in I} w_{i} x_{i} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{array}{ll}
\sum_{i \in I_{k}} x_{i} \geq 1 & \text { for all } k \in K \\
x_{i} \in\{0,1\} & \text { for all } i \in I, \tag{3}
\end{array}
$$

where $I_{k} \subseteq I$ is the subset of fields involved in the edit k.
Step 1: If $\mathcal{P}_{E}\left(x^{*}, a\right) \neq \emptyset$ then stop (x^{*} is an optimal EIP solution).
Otherwise, find a new violated implicit edit k^{\prime}, add the constraint

$$
\begin{equation*}
\sum_{i \in I_{k^{\prime}}} x_{i} \geq 1 \tag{4}
\end{equation*}
$$

to the constraint family (2), update x^{*} with an optimal solution of the new SCP and go to Step 1.

New general algorithm:

Inspired by previous works, we can propose the following general approach:
Step 0: Let $K \subseteq E$ be the set of edits not satisfied by the record a. Let x^{*} be an optimal integer solution of the Set Covering Problem (SCP):

$$
\begin{equation*}
\operatorname{minimize} \sum_{i \in I} w_{i} x_{i} \tag{5}
\end{equation*}
$$

subject to

$$
\begin{array}{ll}
\sum_{i \in I_{k}} x_{i} \geq 1 & \text { for all } k \in K \\
x_{i} \in\{0,1\} & \text { for all } i \in I \tag{7}
\end{array}
$$

where $I_{k} \subseteq I$ is the subset of fields involved in the edit k.
Step 1: If $\mathcal{P}_{E}\left(x^{*}, a\right) \neq \emptyset$ then stop $\left(x^{*}\right.$ is an optimal EIP solution).
Otherwise, add the constraint

$$
\begin{equation*}
\sum_{i \in I: x_{i}^{*}=0} x_{i} \geq 1 \tag{8}
\end{equation*}
$$

to the constraint family (6), update x^{*} with an optimal solution of the new SCP and go to Step 1.

New mathematical model for continuous data and linear edits:

- Each component a_{i} of the given record a is a continuous number in the known interval $\left[/ b_{i}, u b_{i}\right]$, for all $i \in I$.
- Each edit can be written as a finite set of linear inequalities, thus

$$
\mathcal{P}_{E}:=\left\{y \in\left[I b_{1}, u b_{1}\right] \times \ldots \times\left[I b_{n}, u b_{n}\right]: \sum_{i \in I} m_{i j} y_{i} \leq b_{j} \text { for all } j \in J\right\}
$$

is a polytope, shortly denoted by $\mathcal{P}_{E}=\left\{y \in \mathbb{R}^{n}: M y \leq b, \mathrm{lb} \leq y \leq u b\right\}$.

Then the EIP can be formulated as a Mixed Integer Linear Programming (MILP) problem:

$$
\begin{equation*}
\operatorname{minimize} \sum_{i \in I} w_{i} x_{i} \tag{9}
\end{equation*}
$$

subject to

$$
\begin{align*}
\sum_{i \in I} m_{i j} y_{i} \leq b_{j} & \text { for all } j \in J \tag{10}\\
a_{i}-\left(a_{i}-\mid b_{i}\right) x_{i} \leq y_{i} \leq a_{i}+\left(u b_{i}-a_{i}\right) x_{i} & \text { for all } i \in I \tag{11}\\
x_{i} \in\{0,1\} & \text { for all } i \in I \tag{12}
\end{align*}
$$

A similar MILP model with double number of variables:

As done by Ragsdale and McKeown (1996), it is possible to write a similar model by considering two 0-1 variables associated to each field i :

$$
x_{i}^{-}=\left\{\begin{array}{ll}
1 & \text { if } y_{i}<a_{i} \\
0 & \text { otherwise }
\end{array} \quad x_{i}^{+}= \begin{cases}1 & \text { if } y_{i}>a_{i} \\
0 & \text { otherwise }\end{cases}\right.
$$

Then the EIP is equivalent to:

$$
\operatorname{minimize} \sum_{i \in I} w_{i}\left(x_{i}^{-}+x_{i}^{+}\right)
$$

subject to

$$
\begin{aligned}
\sum_{i \in I} m_{i j} y_{i} \leq b_{j} & \text { for all } j \in J \\
a_{i}-\left(a_{i}-\mid b_{i}\right) x_{i}^{-} \leq y_{i} \leq a_{i}+\left(u b_{i}-a_{i}\right) x_{i}^{+} & \text {for all } i \in I \\
x_{i}^{-}, x_{i}^{+} \in\{0,1\} & \text { for all } i \in I
\end{aligned}
$$

The inequality $x_{i}^{-}+x_{i}^{+} \leq 1$ is unnecessary due to the objective function.
Still, all the ideas introduced for model (5)-(7) apply also to this extension.

FIRST algorithm for the new MILP model:

At a first glance, the model (9)-(12) can be given to a general-purpose MILP optimizer performing a branch-and-bound scheme, like CPLEX developed by ILOG (www.ilog.com), XPRESS-MP developed by DASHOPTIMIZATION (www.dashoptimization.com), GLPK developed by GNU (www.gnu.edu), or ABACUS with SOPLEX developed by ZIB (www.zib.de).

A classical disadvantage is that a LP-based optimizer must internally face ill-conditioned mathematical operations due to constraints (11), leading to numerical problems and wrong solutions. One can try to reduce the number of this bad situations by appropriately turning the tolerance parameters, but it is difficult to find good parameters for most of the EIP instances.

We can help the general-purpose solver by considering, for example, the adhoc branching rule: if $\left(x^{*}, y^{*}\right)$ is an optimal solution of a linear relaxation of the MILP model (9)-(12), then we choose a variable x_{i} with a non-integer value x_{i}^{*} and then we create two subproblems in the branch-decision tree by imposing either $x_{i}=1$ or $y_{i}=a_{i}$.

Background in Duality Theory:

The Farkas' Lemma (1894) says:
Given a set of vectors d^{1}, \ldots, d^{n} and \bar{b} in \mathbb{R}^{m}, then

- either there are non-negative numbers y_{1}, \ldots, y_{n} such that

$$
\bar{b}=y_{1} d^{1}+\cdots y_{n} d^{n}
$$

- or there is a vector u in \mathbb{R}^{n} such that

$$
d^{1^{T}} u \geq 0, \ldots, d^{n T} u \geq 0, \text { and } \bar{b}^{T} u<0
$$

In other words, denoting $\bar{M}:=\left[d^{1} \cdots d^{n}\right]$:
"The polyhedron $\left\{y \in \mathbb{R}^{n}: \bar{M} y=\bar{b}, y \geq 0\right\}$ has a solution if and only if all the solutions u of the cone $\left\{u \in \mathbb{R}^{m}: \bar{M}^{T} u \geq 0\right\}$ satisfy also $\bar{b}^{T} u \geq 0$."

SECOND algorithm for the new MILP model:

By using the Farkas' Lemma, $\mathcal{P}_{E}\left(x^{*}, a\right) \neq \emptyset$ if and only if

$$
\begin{equation*}
\sum_{j \in J} \alpha_{j} b_{j}+\sum_{i \in I} \beta_{i}\left(a_{i}+\left(u b_{i}-a_{i}\right) x_{i}^{*}\right)-\sum_{i \in I} \gamma_{i}\left(a_{i}-\left(a_{i}-I b_{i}\right) x_{i}^{*}\right) \geq 0 \tag{13}
\end{equation*}
$$

for all the directions of the cone:

$$
\mathcal{C}_{E}:=\left\{(\alpha, \beta, \gamma): M^{T} \alpha+\beta-\gamma=0, \alpha \geq 0, \beta \geq 0, \gamma \geq 0\right\} .
$$

Therefore, a solution x is admissible (or feasible) if and only if it satisfies:

$$
\begin{equation*}
\sum_{i \in I}\left[\beta_{i}\left(u b_{i}-a_{i}\right)+\gamma_{i}\left(a_{i}-I b_{i}\right)\right] x_{i} \geq \alpha^{T}(M a-b) \tag{14}
\end{equation*}
$$

for all $(\alpha, \beta, \gamma) \in \mathcal{C}_{E}$.
Step 0: Let us define a master problem as the set covering problem of Step 0 in the previous algorithms, and let x^{*} be an optimal solution.

Step 1: If $\mathcal{P}_{E}\left(x^{*}, a\right) \neq \emptyset$ then stop (x^{*} is an optimal EIP solution).
Otherwise, find an inequality (14) violated by x^{*}, add it to the master problem, update x^{*} with an optimal solution of the new master problem and go to Step 1.

Implementing the SECOND algorithm:

Given a solution x^{*}, the problem in Step 1 of finding a violated inequality (14), if any exists, is called separation problem and it is equivalent to

$$
\operatorname{minimize} \sum_{j \in J} b_{j} \alpha_{j}+\sum_{i \in I}\left(a_{i}+\left(u b_{i}-a_{i}\right) x_{i}^{*}\right) \beta_{i}-\sum_{i \in I}\left(a_{i}-\left(a_{i}-I b_{i}\right) x_{i}^{*}\right) \gamma_{i}
$$

subject to

$$
\begin{aligned}
& M^{T} \alpha+\beta-\gamma=0 \\
& \alpha \geq 0, \beta \geq 0, \gamma \geq 0
\end{aligned}
$$

If the optimal objective value is negative then the optimal solution ($\alpha^{*}, \beta^{*}, \gamma^{*}$) defines a violated inequality (14) to be considered in the master problem.

Advantages of this Benders' decomposition approach:

- The cut generation procedure can also be applied when x^{*} is non-integer.
- Inequality (14) can be strengthened by rounding some coefficients.
- Other families of inequalities (cliques, Gomory,...) can be also added.

Clique inequalities: If $x_{i^{\prime}}+x_{i^{\prime \prime}} \geq 1$ for all $i^{\prime}, i^{\prime \prime} \in S$ then $\sum_{i \in S} x_{i} \geq|S|-1$.

Preliminary computational results:

Algorithm 0: Our new cutting-plane algorithm based on inequalities (8).
Algorithm 1: A general-purpose MILP optimizer on the model (9)-(12).
Algorithm 2: The cutting-plane algorithm described in Garfinkel, Kunnathur and Liepins (1988).

Algorithm 3: The cutting-plane algorithm described in Ragsdale and McKeown (1996).

Algorithm 4: Our branch-and-cut algorithm where only integer solutions x^{*} are separated, which turns to be a new cutting-plane algorithm based on inequalities (14).

Algorithm 5: Our branch-and-cut algorithm when the separation problem is solved on integer and non-integer solutions x^{*}.

All implementations done by the same human programmer, using the $\mathrm{C}++$ programming language on a personal computer Pentium 1500 Mhz running Windows XP. CPLEX 8.1 was used as MILP optimizer. Time limit: 1 hour.

Benchmark instances:

Class I: They are the instances used in Ragsdale and McKeown (1996). Hence, $|I|=n=50,|J|=m=20, w_{i}=1$ for all $i \in I, a_{i} \in[-100,+100]$, $b_{j} \in[0,1000] ; m_{i j}$ are zero with probability 0.2 , in $[1,20]$ with probability 0.24 and in $[-20,-1]$ with probability 0.56 . We set $l b_{i}=-100$ and $u b_{i}=$ 100 for all $i \in I$. The FORTRAN code of the random generator was kindly provided by Cliff Ragsdale.

Class II: They are exactly as before but with $|I|=100$ and $|J|=40$. We have considered three families by also considering different intervals $\left[1 b_{i}, u b_{i}\right]$ in $\left[-10^{3}, 10^{3}\right],\left[-10^{4}, 10^{4}\right]$ and $\left[-10^{5}, 10^{5}\right]$.

Class III: They are artificial instances kindly supplied by William Winkler and María García (US Census of Bureau) consisting of 10,994 records with 17 fields and two set of edits. The first set contains 136 edits like

$$
l_{j} \leq \frac{y_{i^{\prime}}}{y_{i^{\prime \prime}}} \leq u_{j} \quad \text { for some } i^{\prime}, i^{\prime \prime} \in I\left(i^{\prime}<i^{\prime \prime}\right) \text { and } j \in J
$$

in which each $u_{j}-l_{j}$ takes a value between 10^{-1} and 10^{7}. The second set of edits contains to two balancing edits like

$$
y_{i^{\prime}}+y_{i^{\prime \prime}}=y_{i^{\prime \prime \prime}} \quad \text { for some } i^{\prime}, i^{\prime \prime}, i^{\prime \prime} \in I
$$

Average results on five instances from Class I:

Failed	\#	Obj.	Algorithm 1			Algorithm 5			
			Cuts	Nodes	Time	(14)	Iter.	Nodes	Time
1-4	5	3.4	3.4	2.0	0.047	9.6	20.6	3.2	0.043
5-8	5	5.0	4.2	8.4	0.066	15.6	35.4	12.4	0.078
9-12	5	5.6	6.6	30.2	0.116	44.6	93.6	33.8	0.206
13-16	5	6.8	4.2	149.6	0.418	70.2	120.2	34.0	0.287
17-20	5	7.4	4.6	289.2	0.631	245.0	550.8	223.4	1.259

Failed	Algorithm 0			Algorithm 2		Algorithm 3		Algorithm 4	
	Iter.	Time	Ok	Iter.	Time	Iter.	Time	(14)	Time
1-4		18.3	3	48.0	0.828			4.0	0.029
5-8		-	0	133.0	5.228			9.4	0.131
9-12		6.3	1	228.0	23.869			12.6	0.309
13-16		-	0	666.0	296.684			15.4	0.578
17-20		-	0	684.0	231.087			26.6	1.728

Average results on five instances from Class II:

$\left[I b_{i}, u b_{i}\right]$	Failed	\#	Obj.	Algorithm 1			Algorithm 5		
				Nodes	Time	OK	(14)	Nodes	Time
$\left[-10^{3}, 10^{3}\right]$	1-8	5	6.4	926.4	6.2	5	1189.4	631.2	6.7
	9-16	5	9.2	6297.4	27.7	5	1641.4	661.6	9.4
	17-24	5	10.0	9822.2	47.1	5	17816.0	4438.0	115.6
	25-32	5	12.0	8752.8	53.1	5	14348.6	4170.2	88.1
	33-40	5	12.4	6336.0	44.6	5	17275.0	3511.2	120.9
$\left[-10^{4}, 10^{4}\right]$	1-8	5	3.6	1389.2	17.7	5	138.8	122.6	1.0
	9-16	5	5.0	25644.8	187.4	5	2254.6	1159.6	13.8
	17-24	5	5.6	149298.5	1595.9	4	13319.8	3199.4	92.0
	25-32	5	5.8	93463.0	1011.3	4	19524.0	4104.2	127.2
	33-40	5	6.8	232025.0	3063.8	4	87244.0	15334.6	1452.4
$\left[-10^{5}, 10^{5}\right]$	1-8	5	3.6	6501.8	54.0	5	100.4	67.8	0.6
	9-16	5	4.8	96563.5	1366.0	4	1741.4	1930.4	14.4
	17-24	5	6.4	-	-	0	2210.2	2536.2	17.0
	25-32	5	6.6	-	-	0	3868.6	4063.8	31.0
	33-40	5	7.6	-	-	0	7054.0	7621.0	57.2

Average results on instances from Class III:

Failed	\#	Obj.	Algorithm 1			Algorithm 5				
			Cuts	Nodes	Time	Clique	(14)	Iter.	Nodes	Time
1-15	223	1.75	16.8	0.229	0.008	12.135	0.135	1.188	0.000	0.004
16-30	5384	2.91	69.5	0.673	0.016	15.996	0.297	1.331	0.001	0.005
31-45	4281	4.10	72.7	1.342	0.026	19.050	0.308	1.314	0.000	0.005
46-60	1018	5.28	70.7	3.949	0.037	36.357	0.315	1.356	0.000	0.006
61-75	87	6.20	62.0	8.034	0.046	62.207	0.287	1.471	0.000	0.005

	TOT.	EDIT 1	EDIT 2	EDIT 3	EDIT 4	EDIT 5
TOT.	---	10	1	0	0	10
REG. 1	2	Fobe	True	True	True	Fobe
REG. 2	2	Palse	True	True	True	Pales
REG. 3	2	Fabe	True	True	True	Fases
REG. 4	2	Palse	True	True	True	Pulas
REG. 5	2	Fobe	True	True	True	Fase
REG. 6	2	Fabs	True	True	True	Pabs
REG. 7	3	Fobe	罭alse	ITrue	True	Fabe
REG. 8	2	Falas	True	True	True	rabes
REG. 9	2	Fobe	True	True	True	Fabe
REG. 10	2	Fulse	True	True	True	Pabs

Para una celda [i, i): El valor es TRUE siel registroi cumple el edit i)

REGISTROS INCORRECTOS REGISTRO $1:[40,00 \%] \rightarrow$ EDITS INCORRECTOS EDIT $1:[100,00 \%] \quad \rightarrow \quad$ SI (NUMERO $=2$) ENTONCES (NRO_VIV $=52148)$

EVALUACION DE EDITS EXPLICITOS
[REGISTRO:7. EDIT: 2]

