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ABSTRACT: Item nonresponse is a problem that is often encountered when dealing with economic 
data. Imputation is a popular strategy to handle item nonresponse. However, imputations obtained by 
common imputation methods, such as hot deck and regression imputation, mostly do not satisfy the 
balance edit constraints imposed on economic data. In this paper we therefore propose to use the Dirichlet 
distribution in order to impute missing items while satisfying balance edits. 
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1. Economic data consist of many logical constraints on the data items, such as the fact that 
company profits must equal turnover minus expenses. Commonly used imputation methods such as hot 
deck and (random) regression imputation mostly do not provide imputations that satisfy these constraints. 
In this paper we therefore suggest the use of another imputation scheme to obtain imputations that will 
satisfy these linear restrictions. We will first discuss the distribution used to model these economic data, 
which is the Dirichlet distribution. Next random number generation and parameter estimation will be 
treated as well as the EM algorithm. Finally, some preliminary results and areas of future research will be 
discussed. 
 
2. Missing data is a prevalent problem in survey analysis. At Statistics Netherlands imputation is 
often used to estimate and fill in missing data items, since missing values result in less efficient estimates 
due to the reduction of the sample size of the dataset. Besides, if the nonrespondents are judged to be 
significantly different from the respondents on the basis of auxiliary information, imputation reduces the 
nonresponse bias. Finally, imputation is applied because standard complete data methods such as 
regression analysis cannot immediately be used to analyse data when items are missing. 
 
3. Several imputation methods have been developed, see for an overview of the methods that are 
frequently used, for example, Kalton and Kasprzyk (1986). Imputation methods can be either 
deterministic or stochastic. Deterministic methods determine imputed values uniquely, this means that 
when the imputation process is repeated the same value will be imputed. Stochastic methods depend on 
some sort of randomness, which means that when the process is repeated, other values may be imputed. 
Deterministic imputation methods avoid the loss in precision associated with the added randomness as 
opposed to stochastic methods. Therefore these methods are well suited to estimate means or totals. 

                                                      
1 Prepared by Caren Tempelman, DTMN@cbs.nl. 
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However, the variance will be underestimated and the shape of the distribution will be distorted. So for 
the creation of general purpose datasets, stochastic imputation is preferred. 
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4. Examining realistic data from Statistics Netherlands leads to the conclusion that the data are 
rarely normally distributed and that they are mostly very skew. Distributions for models are often chosen 
on the basis of the range within which the random variable is constrained to vary. For a variable 
constrained between zero and one the beta distribution has proved useful.  
 
5. The beta distribution is defined by the probability density function (pdf) 
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6. This functional form is extremely flexible in the shapes it will accommodate. It is symmetric if 

βα =  and asymmetric otherwise. Besides it can be hump-shaped or U-shaped. Note that it reduces to 

the uniform distribution if 1== βα . Also note that the beta distribution is symmetrical, that is if 

),(beta~ βα;  then ),(beta~1 αβ;− . An extension of the beta distribution is the so-called 
Dirichlet distribution, also referred to as the multivariate beta. Its pdf is  
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We shall refer to the pdf of Dirichlet distribution given by (1) with ),,(Dir 11 		 αα �− . Note that 
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7. The Dirichlet is a convenient distribution on the simplex: it is an exponential family and has 
finite sufficient statistics. The first and second order moments of the Dirichlet distribution are  
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8. The following theorems apply.  
 
Theorem 1 (Marginal Dirichlet) 
If ),,( 1

�;; �  is a random variable vector having the (k-1)-variate Dirichlet distribution 

),,(Dir 11 �� αα �− , then the marginal distribution of ),,(
11 �;; � , NN <1  is the 1N -variate Dirichlet 

distribution ),,,(Dir 11 111
���� αααα +++ �� .  

 
Theorem 2 (Conditional Dirichlet) 

If ),(Dir~),( 21121 ;;; ′′′′′= −
�  where 1;  and 1  consist of U  elements and 2;  and  2  consist 

of V  elements and VUN += , then  
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See for a proof of these theorems Wilks (1962). 
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A. The edit constraints 
 
9. In general there are two types of linear edit constraints: balance and inequality edits.  
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We will first consider balance edit constraints. We believe that we can impute the missing items, 
satisfying the edit constraint directly and preserving the distribution of the data, by making use of the 
Dirichlet distribution.  
 
10. Consider edit rule (2) and transform it by dividing the different parts by the total 1+
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11. Note that we assume that the total, 1+

�; , is known. This is done for two reasons. First of all since 

it is an aggregate the nonresponse rate will probably be low. And secondly, if it is indeed missing we 
expect to be able to estimate this value very well based on the other variables in the survey, whereas the 
different subtotals are far more difficult to estimate this way.  
 
 
B. Imputation 
 

12. A special case arises when only one ,
~ �
;  NL ,,1�=  is missing. In this instance deductive 

imputation can be used. Deductive imputation means that the value of the missing item can be established 
with certainty based on the other items in the survey.  
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13. If all items of ;
~

 are missing, we can obtain imputations by drawing from ),,(Dir 11
�� αα �− . 

However, a common circumstance is that a few item values are missing and the others are observed. In 
this case one needs to draw values from the conditional distribution of the missing items given the 
observed ones, which is also a Dirichlet distribution as was established in Theorem 2.  
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Thus imputations for missing items can be obtained by drawing from the conditional Dirichlet 
distribution mentioned in (3). 
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15. In order to impute missing values we need to generate random values from the Dirichlet 
distribution. This can be done as follows. Recall that when ),(gamma~1 λα8  and 

),(gamma~2 λβ8 , then ),(beta~
21

1 βα��
�

= += . This can be generalised to the Dirichlet 

distribution, see for example Wilks (1962). Suppose �88 ,,1 �  are independent random variables 

having gamma distributions: ),(gamma,),,(gamma 1 λαλα �� . Let �����
�

�= ++= �
1

, for NL ,,1�= . 

Then �== ,,1 �  has the (k-1)-variate Dirichlet distribution ),,(Dir 11 �� αα �− . Thus random values from 

the Dirichlet distribution can be obtained by drawing independently from gamma distributions. 
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A. The method of moments estimator 
 
16. The parameters �αα ,,1 �  can be estimated by a method of moments estimator. The method of 

moments estimator is consistent. Recall that the first and second order moments of the Dirichlet 
distribution are  
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Solving for �α  gives 
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17. Although the method of moments is straightforward, estimation based on the method of moments 
generally is not statistically efficient. That is, the asymptotic variance-covariance matrix of estimates is 
usually larger that the inverse of the information matrix. However, estimation based on the method of 
moments can serve as an excellent initial guess to start iterations in the Newton-Raphson algorithm, 
which we use to maximise the likelihood. 
 
 
B. Maximum likelihood estimation 
 
18. In order to find a consistent estimator that is statistically efficient, maximum likelihood 
estimation can be applied. When sampling from a distribution that is a member from an exponential 
family of distributions, the maximum likelihood estimators will be a function of the sufficient statistics. 
The likelihood is defined as follows  
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19. The joint density of �;; ,,1 �  is given by (1). Then the likelihood will be  
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20. Taking the natural logarithm leads to the following loglikelihood function 
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Taking the first derivative results in 
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where )(⋅Ψ   is the digamma function defined by )(
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21. We need some iterative scheme to solve the equation ,0)|( =;�J  NW ,,1�= . A commonly 

used method is the Newton-Raphson method. Determine an initial value for , for example by means of 
the method of moments estimator. To find the ���!  that solves =)|( ;J 0, calculate by iteration and 
until convergence  
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where + is the Hessian, the matrix of second-derivatives of O  given by 
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where Ψ′  is known as the trigamma function. 
 
22. Under some regularity conditions the likelihood function is strictly concave for exponential 
families, and the MLE exists and is unique, since the Dirichlet distribution is an exponential family this 
holds true for the Dirichlet distribution. A direct proof has been given by Ronning (1989). 
 
23. However, when we are faced with missing item values ;  is not completely observed and the 
loglikelihood cannot be calculated directly. In order to estimate the maximum likelihood estimates when 
some of the variables involved are not observed the EM algorithm has been developed. 
 
 
C. The Expectation-Maximization (EM) algorithm 
 
24. The EM algorithm (Dempster, Laird and Rubin, 1977) is a popular tool in statistics. The EM 

algorithm is based on the assumption that the missing data 
�
	 �

;  and the parameters, in this case 
�αα ,,1 � , are interdependent. The intuition behind the EM is that the 

�
	 �
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This process will be iterated until the estimates converge. The idea is that we would like to maximize the 
complete data likelihood but since we do not know it, we maximize its expectation instead. The EM 
algorithm consists of two steps, an expectation step and a maximization step.  
 
25. Expectation step 

For each iteration M  compute ),|)(()( 1−=
������

� O(O ; , where   is the complete data loglikelihood 

and the expectation is taken with respect to the conditional distribution of the missing data given the 

observed data and the parameter 1−� . In the case of distributions from an exponential family we only 
need to calculate the expected sufficient statistics. 
 
26. Maximization step 
Now that we have )(�O , we can calculate the maximum likelihood estimates based on the complete data 

loglikelihood, and thus re-estimate . 
 
27. In order to apply the EM algorithm when the data are Dirichlet distributed the expected sufficient 
statistics need to be calculated, since the Dirichlet is an exponential family. These values can be easily 
computed from the natural parameterisation of the exponential family representation of the Dirichlet 
distribution. Recall that a distribution is an exponential family if it can be written in the form: 
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where  is the natural parameter, )(;7 is the sufficient statistic, and )($ is the natural logarithm of the 
normalization factor. The density function of the Dirichlet (equation (1)) can be written in this form as 
follows 
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28. The natural parameter of the Dirichlet is therefore 1−= �� αθ  and the sufficient statistic is 

,ln)( �� ;;7 =  NL ,,1�= . Using the general fact that the derivative of the ln normalization factor with 

respect to the natural parameter is equal to the expectation of the sufficient statistic, we obtain 
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29. The expectation of the sufficient statistic conditional on the observed values can also be easily 
calculated since the conditional distribution of Dirichlet distributed variables is also a Dirichlet 
distribution (see Theorem 2). Consider ),,( 1 ′= �;; �;  which is (k-1)-variate Dirichlet distributed 

with parameters �αα ,,1 � . The missing ; ’s are represented by the vector ),,( 1 ′= �
�	� 


;; �;  and 

the observed ; ’s are represented by ),,( 1 ′= + ��

����

;; �; . Then  

),,(Dir~,|ˆ
11 ��

������	� � αα �−;;  

where 
�	� �������	� �

;;�; 1)1(ˆ −′−=  
 
30. It follows that 

                                     ],|ˆ[lnE ;
������	 �

 ;  ∑
=

Ψ−Ψ=
!

"
"#

1

),()( αα                              PL ,,1�=  

                             ],|
1

[lnE ;
;�

$�%�&
$�%�&

'	( &
(;

′− ∑
=

Ψ−Ψ=
)

*
*+

1

),()( αα                              PL ,,1�=  

                                      ],|[lnE ;
,�-�./	0 .

0; ∑
=

Ψ−Ψ+′−=
1

2
23

4�5�6

1

),()()1ln( αα;�   PL ,,1�=  

Plug this value into equation (6) for the missing items, and calculate the parameter estimates. 
 
31. For those instances that a solution to the M-step does not exist in closed form a generalized EM 
algorithm (GEM) has been developed. Generalizations appear by strictly increasing the complete data 

loglikelihood, )()( 1
1

7
7

7
7 OO ≥+

+ , rather than maximising it. This could, for example, be achieved by 

calculating only one Newton Raphson step. 
 
 
VI. SOME PRELIMINARY RESULTS 
 
32. In this section we want to compare the method described above with several imputation methods 
that are frequently used at Statistics Netherlands. This comparison will be carried out using a realistically 
generated dataset based on actual data from Statistics Netherlands, in which missing values will be 
created and imputed.  
 
 
A. Missing data mechanism 
 
33. The missing data mechanism concerns the reasons why values are missing, and in particular 
whether these reasons relate to values in the data set. Any analysis of data involving item nonresponse 
requires some assumption about the missing data mechanism. In our case we want to compare the 
different imputation methods given a certain missing data mechanism. Because of this and the fact that it 
concerns a preliminary investigation of the proposed method, we will assume that the data are missing 
completely at random (MCAR), that is the probability that an item is missing does not depend on the 
other items in the dataset and is equal for all items.  
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B. Imputation methods  
 
34. The imputation methods that we apply to the missing data are 

• Mean imputation (MI),  
The respondent mean is imputed for each missing item. Next these imputed values will 
be proportionally adjusted in order to satisfy the edit constraints. 

• Nearest neighbour ratio hot deck (NNHD),  
The missing items will be imputed using a complete donor record that is most similar to 
the record with missings. This donor will be found by means of a Euclidian distance 
measure, based on the responses that were observed. Next the ratios between items of this 
donor, rather than the reported items, are used for imputation in order to immediately 
satisfy the edit constraint. 

• Random ratio hot deck (RHD),  
In this case a donor will be chosen randomly and again the ratios between items of this 
donor are used for imputation.  

• Dirichlet imputation (DIR), the aforementioned method. 
 

35. Because some of these imputation methods are stochastic (RHD and DIR) we apply those 50 
times in order to rule out differences occurring due to the random nature of the method. 
 
 
C.� Results 
 
36. The dataset used consists of 12 subtotals regarding business expenses, which add up to the total 
business expenses reported. The number of records, n, is 200. We assume that 30 percent of the items are 
missing. The missing items are generated by means of independent draws from the Bernouilli distribution 
with parameter 3.0=S . 
 
37. In order to correct for differences occurring due to the fact that the nonresponse is random we 
repeat this process several (25) times. In this way we can judge the methods independently of the way the 
nonresponse occurred given a certain missing data mechanism. 
 
38. The performance of the imputation methods is measured by means of three different measures 
describing location and shape of the distribution. First of all for each imputed dataset we compute the 
average relative absolute deviation from the actual mean. That is: 
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aggregate for the actual dataset. The deviation from the actual variance is calculated similarly: 
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where 
� ���

�Y , 12,,1�=L , is the variance of variable L  after imputation, and 
� � ���

�Y is the true variance of 

variable L . Finally, to assess the differences in distribution between the imputed and actual dataset, the 
Kolmogorov Smirnov statistic is calculated, which is based on the greatest absolute vertical distance 
between the distribution functions. 
 
39. The results of these statistics are summarized in Table 1. Obviously mean imputation will lead to 
the smallest deviation from the true mean. The other methods seem to perform equally well.  
 
40. With regard to the relative deviation from the true variance we observe somewhat unusual 
behaviour. One would expect the MI method to have the largest deviations from the true variance. 
Probably this is not the case due to the fact that the imputations are adjusted after imputation, and 
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therefore attribute to the calculated variance. Besides, since the variance of this measure is relatively 
large it is hard to draw any conclusions from this measure. The variance is mostly large due to the fact 
that there are one or two large deviations from the actual variance, which also strongly influences the 
mean deviation from the variance. Therefore more research should be done and other measures should be 
applied to investigate the ability of these methods to preserve the true variance. 
 
41. Finally, the average Kolmogorov Smirnov statistic behaves as expected. The lower the statistic, 
the closer the distributions are. The Dirichlet method results in an imputed dataset that describes the 
distribution of the actual dataset best. 
 
 

Relative deviation from the actual mean 
 Average Variance 
MI 0.11 0.03 
NNHD 0.15 0.06 
RHD 0.15 0.08 
DIR 0.15 0.07 
   
Relative deviation from the actual variance 
 Average Variance 
MI 0.33 0.90 
NNHD 0.47 3.38 
RHD 0.58 5.60 
DIR 0.63 6.80 
   
Kolmogorov Smirnov statistic  
 Average Variance 
MI 6.32*10-2 7.15*10-4 
NNHD 4.44*10-2 3.56*10-4 
RHD 4.31*10-2 3.31*10-4 
DIR 3.70*10-2 1.81*10-4 

         Table 1. Comparison of the four imputation techniques based on 
           three different performance measures. 

 
 
VII. CONCLUSIONS 
�

42. The process of adjusting imputations in order to satisfy edit constraints may seriously distort the 
distribution of the imputed values. Using a method that imputes satisfying the edit constraints directly 
would therefore be desirable. The simulations in the previous section show that mean imputation 
performs worst in preserving the distribution. The method using the Dirichlet distribution succeeds to 
preserve the actual distribution best, and therefore seems to be a promising method. However, a more 
elaborate simulation study needs to be done. This study should make use of real economic data and create 
missing items according to several missing data mechanisms, while the percentage of missing items is 
varied. 
 
43. Moreover, future research is needed to extend the described method, in order to handle complex 
edits, that is, the fact that variables are present in several edits and inequality edits. 
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