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Abstract 
 
The paper discusses some aspects of the individual risk methodology, that was initially proposed by Benedetti and 
Franconi (1998). The original formulation defines a record-level measure of re-identification, called the individual 
risk , that can be estimated exploiting information on the sampling design. This methodology is currently 
implemented in the testing version of the software µ-Argus, developed under the European project CASC.  
When dealing with social surveys, that is the context where the individual risk methodology is best suited, it is 
reasonable to hypothesise that identification, which consists of linking a sample unit to a population unit, is 
performed based on a set of known identifying or key categorical variables. This implies that the individual risk 
depends on the joint distribution of the key variables, e.g. on the size fk, Fk of subgroups of units having a given 
combination of key variables in the sample and population, respectively. Unlike the approaches that propose a 
record-level measure of risk based on the concept of sample uniques (e.g. Skinner and Elliot, 2002), the risk is 
defined for any record in the sample. The measure also differs from those based on the sample frequency of 
combinations, because inference on the sizes Fk of population subgroups is performed. The method shares with the 
above mentioned strategies the inferential nature and the approach to protection, respectively. Indeed, having 
estimated the individual risk for each record in the sample, protection is ensured by applying local suppression to 
high risk individuals only.  
 
The paper discusses the formalisation of the individual risk function for files of independent units. Upon defining 
the disclosure scenario, the individual risk measure is linked to the probability of re-identification of a single record 
given information on a set of key variables observed on the whole population. Based on such connection, an overall 
measure of risk, called the re-identification rate, is proposed. Although this is a measure at the file level like the 
ones discussed by Skinner and Elliot (2002), it exploits the probability of re -identification of each sampled record. 
In particular, it is defined in terms of the expected number of re-identifications in the file to be released. Whenever 
the individual risk methodology is used to protect a sample by local suppression, the user is requested to select a 
risk threshold that classifies individuals into safe or unsafe. The paper investigates how the re-identification rate 
may be exploited for selection of a proper risk threshold using a measure of target “safety” of the whole file.  
 
Introduction 
 
This paper describes some aspects of the individual risk methodology as introduced in an initial paper by 
Benedetti and Franconi (1998). These authors propose a methodology for individual risk estimation based 
on the sampling weights; such procedure has been implemented into the beta version of the software µ-
ARGUS. In this methodology by disclosure it is meant a correct record re-identification that is achieved 
by an intruder upon comparing a target individual in a sample with an available list of units that contains 
individual identifiers such as name, address and so on.  
 
The basic concept is that of introducing a risk function defined at the individual level, instead of an 
overall measure defined on the whole file. The individual risk  of unit i in the sample is the probability of 
it being correctly re-identified. Such probability is estimated, as we will show below, based on the 
sampled data. After the risk has been estimated, the main approach consists in fixing a threshold in terms 
of risk, e.g. the probability of re-identification. Units exceeding such threshold are defined at risk, and 
local suppressions will be applied to high risk individuals only, so as to lower their probability of being 
re-identified. In practice, risk estimation has the aim of introducing a “disclosure” ordering of units, 
which is then exploited to apply protection selectively. 
 
1. Notation 
Let the released file be a random sample of size n drawn from a finite population of N units. For generic 
unit i in the population, we denote as wi

–1 its probability to be included in the sample. For each record i 
the released file contains a set of key variables i.e. variables that allow identification and are accessible to 
the public, and the sensitive variables. Under the hypothesis that the key variables are discrete, a situation 
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which is classical in household surveys and in population censuses, we can focus the analysis on each of 
the k=1, …, K subpopulations defined by all the possible combinations of values of such variables; note 
that the maximum number of such combinations, K, can be quite high (in the order of hundred thousand). 
Let fk and Fk be, respectively, the number of records in the released file and the number of units in the 
population with the k-th combination of categories of the key variables; Fk is unknown for each k . In the 
sample to be released only a subset of the total number K of combinations will be observed and only this 
subset, for whom fk>0, is of interest to the disclosure risk estimation problem. 
 
2. Disclosure scenario 
The definition of disclosure follows the strategy of an intruder trying to establish a link between a unit in 
the sample s to be released and a unit in an available archive R. Such an archive, or register, contains 
individual direct identifiers (name, ID number, phone number…) plus a set of variables called identifying 
or key variables (sex, age, marital status…). The intruder tries to link unit i ∈ s to a unit in R by 
comparing the values of the key variables. An identification occurs when based on this comparison, a unit 
i* in the register is selected as a match to i and this link is correct, e.g. i*  corresponds to i, or otherwise 
stated, i*  is the labelling of unit i in the population.  
 
The following assumptions are made, that define the disclosure scenario : 

1. the archive available to the intruder covers the whole population; this is a conservative approach, 
in that the worst case is considered; this assumption implies that for each i∈s, the corresponding 
unit i*∈R does always exist; 

2. the data to be released are a sample from a larger population, and sampling weights are available; 
3. besides the individual direct identifiers, the archive contains a set of key variables that are also 

present in the sample; 
4. the intruder tries to link a unit i in the sample to a unit i* in the population register by comparing 

the values of the key variables in the two files; 
5. the intruder has no extra information other than the one contained in the register; 
6. a re-identification occurs when a link between a sample unit i and a population unit i* is 

established and i* is actually the individual of the population from which the sampled unit i was 
derived; e.g. the link has to be a correct link before an identification takes place. 

 
3. Definitions  
Within the above described scenario, the individual risk of disclosure ρ is defined as the probability of re-
identification of a unit in the sample. In symbols: 

 ( )* correctly linked with | ,i P i i s Rρ = . 
Clearly the probability that i∈s is correctly linked with i*∈R is null if the intruder does not perform any 
link. Therefore conditioning on the event Li=1 if the intruder attempts a re-identification of unit i ∈ s, and 
Li=0 otherwise we have 

( )* correctly linked with | , , ( )i i iP i i s R L P Lρ = , 

where P(Li) represents the probability that the intruder tries to establish a link between unit i∈s and some 
unit in R. 
The register containing the individual direct identifiers of a unit i* that is included in the sample as unit i 
may be such that the values of the key variables recorded for i* in R differ from those recorded for i in s. 
When trying to match a unit i in the released sample with a unit in the population register, the intruder 
compares the values of the key variables. Record re-identification is more likely if the key variables are 
recorded without discrepancies for i∈s and its corresponding i*∈R. If the key variables are recorded with 
error or missing values in either s or R, less information is available to the intruder for re-identification 
purposes, therefore such an identification is less likely to occur. Denote by Vi the 0/1 variable describing 
whether or not there is agreement in the values of the key variables between unit i∈ s and its 
corresponding i*∈R. Vi=0 means perfect agreement, as far as the key variables are concerned, between 
unit i in the sample and its corresponding unit in the population archive. We can decompose the re-
identification risk as: 
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( )
( )

*

*

( )  correctly linked with | , , , 0 ( 0)

                 correctly linked with | , , , 1 ( 1)

i i i i i

i i i

P L P i i s R L V P V

P i i s R L V P V

ρ = = =
+ = = 

  

 (1) 
 As we already noticed,  

( ) ( )* * correctly linked with | , , , 1  correctly linked with | , , , 0i i i iP i i s R L V P i i s R L V= ≤ = , 

and formula (1) can be bounded by ( )* *( )  correctly linked with | , , , 0i i i ir P L P i i s R L V= = : 

( )* *( )  correctly linked with | , , , 0i i i i ir P L P i i s R L Vρ ≤ = =   

 (2) 
This means that estimating ri

*  in place of ρi is prudential, e.g. the actual risk is lower than the one we are 
estimating. We refer to ri

* as the individual risk of re-identification. Recall that this is an upper bound to 
the probability of re-identification of unit i in the sample. Details on estimation of the individual risk are 
provided in the next section. 
 
A prudential approach may lead to assume P(Li) = 1, e.g. the intruder tries to re-identify each unit in the 
sample, so that the individual risk ri

* simplifies to 

( )* correctly linked with | , , , 0i i ir P i i s R L V= = .  

 (3) 
This is referred to as the base individual risk , and is actually what is estimated within µ-Argus. 
 
4. Estimation of the individual risk 
Consider cross-tabulating the key variables, or collapsing the set of key variables to a single one. In either 
cases a set of combinations {1, …, k , …, K} is produced. A combination k is defined as the specific value 
k taken by this single variable, or the k-th cell in the cross-tabulation. The set of combinations defines a 
partition of both the population and the sample into subdomains. Retaining only the observed 
combinations (combinations with zero sample frequency being omitted) does not alter the above partition 
of the sample. Typically, we expect to find several sampled units within the same subdomain, e.g. 
combination k  of key variables. Observing the values of the key variables on individual i∈s will classify 
such individual into one subdomain. We denote by k=k (i) the index of the subdomain into which 
individual i∈s is classified based on the values of the key variables. 
 
We take into account formula (3), that is, the upper bound to the probability of re-identification of unit i 
in the sample when the key variables exactly agree on the two data archives s and R and any sampled 
individual is matched to one individual in R. Once the intruder has found in the sample fk individuals with 
the same combination k of key variables, k=1, … K, out of Fk individuals in the register R with such 
combination of key variables, these individuals are exchangeable for identification, e.g. each of the fk can 
be linked to any of the Fk, assuming that no discrepancies occur between the sample and the register as 
far as the key variables are concerned. In this case the probability of a correct link conditional to a re-
identification attempt would be simply 1/Fk. Recall that the agency that distributes the data may not have 
access to the population register, and may not know the subpopulation sizes Fk. Therefore Fk is estimated 
via sampling design information. The individual risk is therefore the agency estimate of the upper bound 
(2) to the intruder’s re-identification probability (see Trottini, 2001). According to the above 
consideration, risk as a shorthand for risk from the point of view of the agency. Thus ri

*  appearing in 
formula (2) is estimated as 

 * 1
ˆ ( | ) ( )

k

i k k i
h f

r P F h f P L
h≥

= =∑ . (4) 
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This estimate can be split in two components, of whom the main term,
def1

ˆ( | ) = 
k

k k i
h f

P F h f r
h≥

=∑ , is the 

estimate of the base individual risk ri, whereas the second, P(Li), should be modelled according to the 
attack model, which is a component of the disclosure scenario. 
 
4.1 Estimation of the base individual risk 
In order to evaluate the base individual risk of re-identification îr , the distribution of Fk|fk has to be 
further modelled. For population surveys, Benedetti and Franconi (1998) assume that Fk|fk is distributed 
according to a negative binomial distribution with success probability kp and number of successes fk: 

 ( )1Pr( | ) 1    1
h jj

k k k k
hF h f j p p h jj

  −
 
 
 

−= = = − ≥−  

 
Such framework stems from previous work by Bethlehem et al. (1990), who proposed the following 
hierarchical model: 

 
( )Gamma ,    ( )

| Pois( )

| Bin( , )

k

k k k

k k k

K

F N
n

f F F
N

π λ α λα

π π

, =:

:

:

 

in which K is the total number of combinations. 
Benedetti and Franconi directly model |k kF f  by a negative binomial distribution with parameters 

,k kf p . Rinott (2002, personal communication) criticised choice of the Negative Binomial distribution as 

“the” model for |k kF f . However he showed simulations from several different models and finally 
concluded that, surprisingly, the original negative binomial model performed best. He also stated that 
under a modification of Bethlehem et al. (1990) model, namely  

 

( )Gamma ,    ( )

| Pois( )
| Bin( , )

k

k k k

k k k k

K

F N
f F F p

π λ α λα

π π

, =:

:
:

 (5) 

when 0λ → in the hyper-prior, then  

 | NBin( , )k k k kF f f p:  (6) 
We obtained the same result (6) in a very similar framework, e.g. using model (5) except for giving kπ a 

diffuse (improper) prior ( ) 1/k kp π π∝ : 

 
: ( ) 1/
| Pois( )

| Bin( , )

k k k

k k k

k k k k

p
F N

f F F p

π π π
π π

∝
:

:

 (5’) 

The stated superiority of the negative binomial model, at least in selected circumstances, can be explained 
in light of the result we obtained. In fact use of noninformative priors allows matching Bayesian and 
frequentist results and we therefore expect that model (6) has “good” frequentist properties. Note that use 
of a parameter kp  in the binomial distribution for |k kf F  accounts for stratified sampling, under which 
simple random samples are drawn independently from each stratum. 
The result we obtained is in practice the same of Rinott (2002). Indeed for the Gamma distribution it can 
be proved that when 0 and 0λ α→ →  with the same order, the Gamma density 

1( ; , )
( )

k
k kp e

α
λπαλ

π λ α π
α

−−=
Γ

 tends to 1/ kπ , which is a diffuse prior. Use of noninformative prior is 

also convenient as knowledge of K is not required. 
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As the parameter pk is estimated based on the observed frequencies, model (6) is therefore justified as a 
noninformative empirical Bayes procedure. The maximum likelihood estimator of pk under model (5’) is 

ˆ k
k

k

f
p

F
= . As under this framework Fk is not observable, Benedetti and Franconi (1998) propose to 

estimate it as 

( )

ˆ k
k

i
i k i

f
p

w
∈

=
∑

. Properties of ratio estimators like kp̂  are described e.g. in Särndal et al. 

(1992). 

 
Figure 1. Population frequencies vs. simulations from negative binomial distributions 

 
Note also that the model introduced by Benedetti and Franconi is a mixture model, in which a size 1 
sample from each subpopulation is observed. For this reason, unless assuming that a sufficiently high 
number of classes can be collapsed, it is also difficult to test the assumption (5’) or (6) based on the 
observed data. Figure 1 provides a simple simulation experiment in which for fixed combinations, their 
population frequencies Fk are compared to independent samples of size 1 from negative binomial 

distributions of type (6), where ˆ k
k

k

f
p

F
=  (Fk is known in this experiment). Of course this cannot be 

interpreted as a formal test. 

Under model (6), the base individual risk equals 11
( | ) ( | )

k

k k k k
h f

P F h f E F f
h

−

≥

= =∑ ; for estimation we 

can exploit the analytic expression valid for the above expectation under the negative binomial 
distribution, e.g.  

 
( )

1 1
1

0

( | )  
1

k
k

k

f
f

k k k f
k

y
E F f p dy

p y

−
− =

−∫   

 (7) 
The expression in formula (7) may be computed, and approximated for large fk. 

Substitution of an estimate kp̂  in formula (7) above leads to estimation of the base individual risk of 

disclosure îr . 
For the purpose of estimating the base individual risk, Benedetti and Franconi (1998) rewrite (7) by an 
expansion based on the Binomial theorem; however this might lead to unstable estimates as it depends on 
the ratio ˆ ˆ[ /(1 )] kf

k kp p−  Alternative expressions based on the Hypergeometric function  

 
( )

( ) ( )
( )( ) dttztt

bcb
c

zcbaF abcb −−−− −−
−ΓΓ

Γ
= ∫ 11),;,(

1

0

11   
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may be exploited. Indeed 

 ( )2 1 , ; 1;1
kf

k
k k k k k

k

p
r F f f f p

f
= + −  

We also note that approximations of the base individual risk exploiting the above representation can be 
provided. To this aim we used the series representation of the Hypergeometric function. In this case, 
convergence of the series is guaranteed by fk being always greater than zero. 
Note that 0 1kp< < , but estimates might attain the extremes of the unit interval. Whereas we never deal 

with ˆ 0kp = , which is obtained only when 0kf = , it can still happen that ˆ 1kp = . In this case 

2 1( , , 1,0) 1k k kF f f f + = , and the base individual risk equals 1/fk. Details are provided in a technical 
report (Polettini, 2003). 
Estimating the individual risk using relation *

îr =P(Li) îr  requires specifying the attack model; each 
choice leads to different estimates. Recall that under any of the attack models discussed in the next 
section the individual risk *

îr  will estimate an upper bound to the probability of correctly linking record i 
of the sample to a unit i* in the population archive. 
 
4.2 Modelling P(Li): attack models  
There are several attack models that one can conceive: 
M1. The simplest approach is the random attack model, under which the intruder selects a unit at 

random from the sample; denoting the sample size by n, we have P(Li)=n-1 which is constant across 
the whole sample.  

M2. A different approach is to hypothesize that the intruder compares the sample frequencies fk with the 
register or population frequencies Fk and then tries to identify first those population individuals that 
are highly represented in the sample, e.g. those scoring high on the ratio fk/Fk. In this case we have 
P(Li)= fk/Fk, which is constant over a single combination of key variables.  

M3. A prudential assumption is to hypothesize that the intruder tries to match any single record in the 
sample to a unit in the register. In this case P(Li)=1 for all i. 

M4. According to different hypotheses, constant probability other than 1, n-1 can be assumed for the 
linking operation: P(Li)=p for all i∈s. This might be the case when a microdata file for research is to 
be released. In this case we might assume that a recognised researcher receiving the data upon 
contract would attempt to disclose information with low constant probability. 

M5. Finally, another attack model assumes that, before trying to link a unit in the sample with a unit in 
the population, the intruder scans the sampling weights and first attempts to re-identify those 
individuals whose inclusion probability is highest. In this case P(Li) can be modelled as P(Li)=πi=wi

-1, 
wi representing the sampling weight. This in general will vary across individuals and combinations. If 
the key variables are those defining the strata in the sampling design, attack model M2 and M5 
should coincide. 

 
5. Assessing the risk of the whole file: global risk  
The individual risk provides a measure of risk at the individual level. A global measure of disclosure risk 
for the whole file can be expressed in terms of the expected number of re-identifications in the file. In this 
section we introduce the expected number of re-identifications and the re-identification rate as relative 
and absolute measures of disclosure, respectively. These measures are not new in the literature of 
disclosure limitation, see for example Lambert (1993) and Dobra et al. (2002). Here these measures are 
introduced with the sole aim to provide a tool for setting a threshold for the individual risk, which in turn 
is needed to protect the data by the individual risk methodology. In our view measures at the individual 
level are more helpful than overall measures, even those based on uniques, in that they allow applying 
protection to selected records. 
 
Define a dichotomous random variable Φ , assuming value 1 if the re-identification is correct and 0 if the 
re-identification is not correct. In general for each unit in the sample one such variable Φ i is defined, 
assuming value 1 with at most probability ri

*=P(Li) ri.. In the discussion we behave as if such probability 



 8

were exactly ri
*. Generally speaking, the random variables Φ i are not i.i.d.. Under any attack model but 

model M5, P(Li) is in fact constant over the subdomain and therefore P(Li) ri is constant. This implies that 
for subdomain k  defined by a given combination k  of key variables, we have fk i.i.d. such random 
variables Φ i assuming value 1 if the re-identification is correct with probability ϕk=P(Li) ri = ri

*. All these 
quantities can be estimated by plugging in the estimates *

îr . The above probabilities can be exploited to 
derive the expected number of re-identifications per subdomain, which equals fk ϕk.  
In general, the overall expected number of re-identifications over the whole sample is the expected value 

ER= ( ) *

1 1

n n

i i
i i

E r
= =

Φ =∑ ∑ , that can be further specified according to the attack model: 

M1. for random attack model, where P(Li)=1/n, 
K

1
1

1
ER k k

k

f r
n =

= ∑ ; 

M2. for the attack model in which the intruder compares the subdomain sizes in the sample and in the 
population, e.g. when P(Li)=fk/Fk, the expected number of re-identifications over the whole file is 

2K

2
1

ER k
k

k k

f
r

F=

= ∑ ; 

M3. for the pessimistic attack model according to which P(Li)=1, the expected number of re-

identifications is simply 
K

3
1

ER k k
k

f r
=

= ∑  

M4. analogously to model M3, the constant probability attack model according to which P(Li)=p, for 

any i, p∈(0,1), has an expected number of re-identifications 
K

4 3
1

ER   ERk k
k

p f r p
=

= = ⋅∑ ; 

M5. when the probability of attack differs among sampled units as in model M5, the probability of re-
identification varies across sub-domains, and the expected number of re-identifications equals in this 

case 
n K

5 ( )
1 1 ( )

ER , where  i k i k k k i
i k i k i

r rπ π
= = ∈

= = Π Π =∑ ∑ ∑  is the total inclusion probability of units 

falling into subdomain k . 
 
If we define the re-identification rate ξ as 

ξ=expected number of re-identifications/n, 
then ξ provides a measure of global risk, i.e. a measure of disclosure for the whole file. 
As it is clear from the above discussion, the risk assessment of the sample is affected by the particular 
assumption made on the attack model. For example, if our hypothesis is that the intruder tries to re-
identify any single sampled individual as in model M3, a confidentiality breach is more likely to take 
place than under attack model M1, when the intruder selects one unit at random from the sample. 
Whereas in the former case the expected number of re-identifications is  

K

3
1

ER k k
k

f r
=

= ∑ ,  and consequently  

K

1
3

k k
k

f r

n
ξ ==

∑
, 

under model M1 there is eventually only one individual out of n that is under attack, and accordingly the 

expected number of re-identifications equals 
K

1
1

1
ER k k

k

f r
n =

= ∑ . In such case we have a re-identification 

rate 

K

1
3 2

k k
k

f r

n
ξ ==

∑
, that is 1/n-th the one under the previous model. 
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6. Remarks on estimation of the individual risk  
The procedure relies on the assumption that the available data are a sample from a larger population. The 
sampling design is assumed known, as far as the sampling weights are concerned at least. 
If the sampling weights are not available, or if data represent the whole population, the strategy used to 
estimate the individual risk is not meaningful. Moreover the significance of the estimates carries over the 
risk estimate. In order to get reliable results, before applying the individual risk methodology, it is 
advisable to recode hierarchical variables (e.g. geography) up to the minimum level these are significant, 
and then run the individual risk methodology so that it produces significant risk estimates. 
Assessment of the analytic properties of the risk estimators is still under investigation (see also Di 
Consiglio et al., 2003). In general due to averaging over the combinations, the overall measures discussed 
in the previous paragraph are more stable than the indiv idual measures. Properties of the latter depend on 
size of the sample subdomain. 
 
7. Practical issues in the application of the individual risk methodology: Threshold setting 
When going to protect the microdata file, users must have in mind a threshold, e.g. a level of acceptable 
risk, representing a risk value under which an individual can be considered safe.  
In determining such a level, users can refer to the expected number of correct re-identifications in the file. 
If the expected number (or percentage) of correct re-identifications is below a level the user considers 
acceptable, then he/she can decide to release the file as it is. Once fixed a tolerable percentage of re-
identifications in the file to release, a threshold in terms of probability of re-identification can be selected 
(see below) and the individuals that exceed such threshold are defined at risk. Specifically, such 
individuals are at risk because their probability of re-identification is high enough to give rise to a large 
expected proportion of correct re-identifications over the whole file. Suppressions will be applied only to 
those individuals whose risk exceeds the selected threshold. Clearly choice of the threshold affects the 
quality of the resulting “safe” file, and before saving the output file, the threshold can be changed. This 
will allow for assessment of the risk of the file, number of consequent suppressions and therefore quality 
of the “safe” file before data release. 
 
As already discussed, a threshold for the individual risk can be determined by choosing the maximum 
tolerable re-identification rate in the sample. We give an example using the worst method of attack 
(attack model M3), which also means that we can refer to the base individual risk (3). According to the 

worst method of attack, the expected number of re-identifications is the sum 
K

3
1

ER k k
k

r f
=

= ∑  (see Section 

5). Units can therefore be sorted according to their individual risk. Since units belonging to the same 
subdomain k  have the same individual risk, strata can be arranged in increasing order of such risk. The 
subscript k  can be used to denote the so sorted strata. Each stratum is responsible for a certain amount rkfk 
of expected re-identifications.  
Once a threshold rt has been set on the individual risk, the individuals whose risk exceeds the threshold 
will undergo protection via local suppression. Protected units will have individual risk lower than the 
selected threshold; for this reason the individuals that will be locally suppressed, will have after 
protection, ri ≤ rt. This means that the expected number of re-identifications in the released sample after 
protection will be certainly smaller than  

t

t

K K

1 K 1

t
k k k

k k

f r r f
= = +

+∑ ∑ . 

In the above formula rt and Kt are in one-to-one correspondence, i.e. Kt indexes the subdomain whose 
units have individual risk rt. In fact the threshold rt can be picked from the discrete set of observed risk 
values, as choosing a threshold that is bracketed by two consecutive observed risk levels would not 
change the expected number of re-identifications. 
The previous formula allows setting rt so that after protection the upper bound on the expected number of 

re-identifications in the released file does not exceed a chosen level τ, e.g. 
t

t

K K

1 K 1

t
k k k

k k

f r r f τ
= = +

+ ≤∑ ∑ . This 

provides a guideline in setting an appropriate threshold on the individual risk based on an objective 
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global measure of risk for the whole file. If as it is reasonable an absolute measure is preferable, the 
desired level for the re-identification rate ξ can be used to derive the appropriate level for the expected 
number of re-identifications and to set the threshold in the same way as it was just discussed. 
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