

Assessing likely affects and formulating mitigation measures

Matthew Cashmore and Martin Smutny Consultants to UNECE Tbilisi, 27 April 2017

Purpose of these steps

- Assessment of likely effects:
 - To identify and evaluate risks, opportunities and/or likely impacts related to the strategic document
 - To evaluate alternatives
 - To summarize how implementing of the strategic document will affect baseline trends
- Mitigation measures: To develop measures to avoid, minimise or compensate likely adverse impacts and to maximise likely positive affects (enhancement)
- Optimally, outputs (i.e. mitigation measures) should be integrated in the document assessed

Assessing likely effects

- Two levels
 - Policy analysis: Evaluation of synergies or conflicts between objectives and priorities of the strategic document and environmental objectives or priorities
 - Analysis of effects: Assessment of effects of the specific development proposals included in the strategic document on the key environmental issues identified in scoping

Policy analysis – example

- Energy policy can address both
 - Energy production (fossil x alternative sources)
 - Energy consumption
- However, often strategic planning on energy emphasises production
- SEA initial policy analysis may recommend also to include priorities regarding energy efficiency, and/or to coordinate alternative energy development with overall energy production goals etc.

Case example: SEA of Enterprise and Innovations Programme Czech Republic

Following initial policy analysis, SEA raised following proposals:

- To include the analysis of linkages between industry/enterprise and the environment/public health, as a necessary source for an objective formulation of the programme's objectives and priority axes in areas concerning the environment.
- To pay attention to energy management and renewable sources utilization as the basic factors of the future enterprise development.
- To add the issue of potential REACH impacts on industrial sectors producing or using chemical substances.

Case example: SEA of Enterprise and Innovations Programme Czech Republic

SEA proposed

- Enhancement of the programme's analytical part regarding linkages between environment and industrial development
- To include specific priority axis, focusing on environmental issues (reducing energy demands, wastes, eco-efficient innovations etc.).
- To include into specific objectives the research and development of eco-technologies, support to eco-efficient innovations, eco-design and cleaner production (especially for SMEs).

Case example: SEA for Krasna Hora Municipal Spatial Plan, Czech Republic

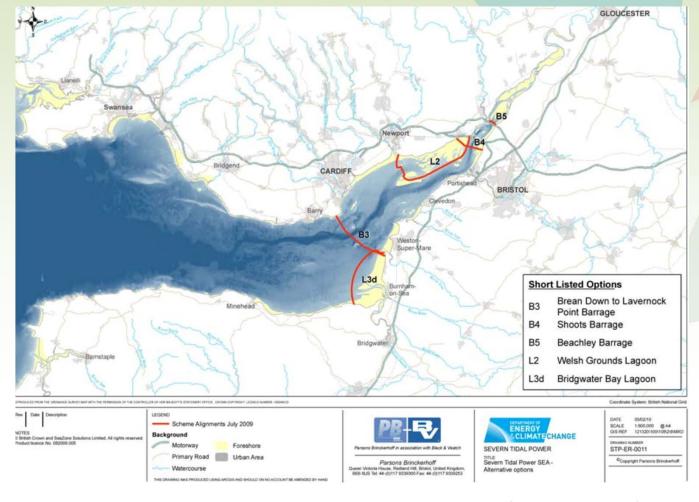
Amendments of existing plan

- Aim is to "examine and modify current functions of certain localities and to identify new areas for urbanization"
- Purpose is to "define new localities for building, for additional service functions in municipality, and other areas for small businesses and manufactures, which will provide new working places in the area. Important is also recreational function".
- Altogether 11 localities proposed to be modified (i.e. to change their function)

Case example: SEA for Krasna Hora Municipal Spatial Plan, Czech Republic

Mitigation measures proposed by SEA:

- To exclude of 1 location from the plan
- To modify 3 locations (area reduction, different land-use)
- To modify projects proposed for implementation on selected locations
- To follow conditions for implementation (formulated by SEA)



Case example: SEA for Krasna Hora Municipal Spatial Plan, Czech Republic

Conditions for implementation

- Due to close location to inhabited area, its necessary to conduct detail noise and emission study before the project implementation. Study has to include also assessment of potential cumulative impacts with already existing agriculture production.
- The most noisy parts of the manufacture place as far from the inhabited area as possible
- The separate family houses from the manufacture by "green belt"
- To save trees along the road
- To solve waste water and rain water management before initiation of development of the area

UNG

environmen

Receptor	B3: Cardiff to Weston Barrage (% change)			B4: Shoots Barrage (% change)			B5: Beachley Barrage (% change)			L2: Welsh Grounds Lagoon (% change)			L3d: Bridgwater Bay Lagoon (% change)		
	HAM	IBM	Sig ¹	HAM	IBM	Sig	HAM	IBM	Sig	HAM	IBM	Sig	HAM	IBM	Sig
Mute Swan	-42 ²			-7	-		-13	-		-26	-		-7	-	
Shelduck	-22		Y	-15	-	Y	-11	-	Y	-31	-	Y	-2	-	
Wigeon	-49 ²		Y	-20	-	Y	-20		Y	-35		Y	-3	-	
Gadwall	-20 ²			-2	-		-17	-		-10	-		-17	-	
Teal	-44 ²	Ű.	Y	-23	-	Y	-24	-	Y	-31	-		-8	-	
Mallard	-41 ²		Y	-27	-	Y	-27	-	Y	-30		Y	-11	-	
Shoveler	-49 ²	j. – .	Y	11	-	Y	6	-		-29	-		3	-	
Pochard	-25 ²	. H	Y	-21	-	Y	-29	-	Y	-17	-		-18	-	
Tufted Duck	-33 ²		Y	-11	-	Y	-19	-	Y	-21	-		-13	14	
Cormorant	-49 ²	-		-19	-		-19	-		-34	- 1		-3	· -	
Little Egret	-49 ²	. –	Y	13	-	Y	8	-		-29	- 1	Y	4	-	
Ringed Plover	-49 ²	-6	Y	-21	-5	Y	-21	-4	Y	-35	-4	Y	-4	-6	
Golden Plover	-49 ²	-19	Y	-18	-15	Y	-19	-15	Y	-34	-1		-3	-16	Y
Grey Plover	-76 ²	-17	Y	-40	-12		-37	-12		-44	-1	Y	-14	-17	Y
Lapwing	-48 ²	-20	Y	-23	-14	Y	-22	-14	Y	-35	-4		-5	-18	Y
Knot	-47 ²	-30	Y	-2	-9		7	-8		-39	-8		-4	-8	
Dunlin	-45	-5	Y	-25	-3	Y	-20	-3		-34	-3	Y	-10	-5	Y
Snipe	-49 ²	-21	Y	-18	-4		-18	-3		-34	-9		-2	-14	
Black-tailed Godwit	59	-1	Y	40	-11		39	-4		-23	0	Y	37	-5	Y
Curlew	-48 ²		Y	-24	-	Y	-22	-	Y	-35	- 2	Y	-5	-	
Greenshank	-49 ²	-	Y	-22	-	Y	-21	-	Y	-35	-	Y	-4	÷.	
Redshank	-48 ²	-21	Y	-24	-8	Y	-23	-4		-35	-11	Y	-5	-12	Y
Turnstone	-48 ²	-21	Y	-23	-9		-22	-4		-35	-12		-5	-14	
No. of modelled species significantly affected by 20 (-) changes to intertidal area					13 (-) 2 (+)			11 (-)			11 (-)			6 (-	

Becauter Democratics and Detential commencetion									
Receptor	Compensation needs	Potential compensation measure (C= conditional)							
	identified (under the								
	Habitats Directive)								
Migratory birds	Compensate for the effects	Managed re-alignment to create							
	of loss of habitat within	saltmarsh adjoining the Severn							
	Severn Estuary on SPA	Estuary (C)							
	bird populations								
	Compensate for the effects	Managed re-alignment to create							
	of loss of habitat within	saltmarsh and mudflat at a							
	Severn Estuary on SPA	distance from the Severn Estuary							
	bird populations	(C)							
	Compensate for the effects	Creation of freshwater wetland							
	of loss of habitat within	habitat close to Severn Estuary							
	Severn Estuary on SPA	,							
	bird populations								
Atlantic	Compensating for loss of	Managed re-alignment adjoining							
saltmeadow	extent of SAC habitat	the Severn Estuary							
	Compensating for loss of	Managed re-alignment at a							
	extent of SAC habitat	distance the Severn Estuary (C)							
Intertidal mudflat	Compensate for loss of	Managed realignment at distance							
and sandflat	extent of SAC habitat	from the Severn Estuary (C)							
Sabellaria reef	Compensation for loss or	New notification (C)							
	decline of reef								
Allis & Twaite	Compensating for	Translocation/introduction of							
shad	population declines in the	species to new location (C).							
	Severn Estuary and its								
	rivers by increasing								
	populations elsewhere								
Allis & Twaite	Offsetting population	Stocking in rivers outside the							
shad	declines in Severn Estuary	Severn Estuary and its tributaries.							
	and its rivers by increasing	(C)							
	populations elsewhere								
Atlantic Salmon	Offsetting population	Stocking in rivers outside the							
	declines in Severn Estuary	Severn Estuary and its tributaries.							
	and its rivers by increasing	(C)							
	populations elsewhere	(-)							

Proposals for compensation for impacts upon areas protected under the Habitats Directive

1. Topic	2. Likely significa nt adverse effect on environm ent*	3. Measure envisaged to prevent or reduce effect (followed by a cross- reference to the measure number used within earlier iterations of the ODR prevent/reduce costings table, where applicable)	4. Alternative options that this measure applies to	5. High level cost estimate (£ Value and does it take scheme above £170/MWh)	6. High level estimate of impact on energy output	7. Effectiveness of measure	8. Establish ed practice?	9. Establish ed method?	10. Development timeframe (measure must be ready by 2020)	11. Averse biodiver sity effect	12. Adverse effect on society & economy	13. Included in assessment s of <u>residual</u> <u>effects</u> , <u>SEA</u> <u>Objective</u> <u>compliance</u> and <u>option</u> <u>secte2</u>
Marine Ecology	Reduction in area of intertidal habitat (including : mudflat, sandflat, saltmarsh , intertidal rock and shingle areas)	M1. Operational management of barrage/lagoon regime adoption of ebb & flood generation as primary mode (1) Change water levels to prevent or reduce effect of tidal range reduction with the potential for 50% less reduction in intertidal area See Marine Ecology topic paper.	Applies to B3 and L2 Note that L3d is already assumed to be Ebb & Flood.	Note: Costings are not provided anywhere in this document. For project costings see the Options Definition Report (PB 2010)	B3 – 5% decrease L2 – 15% increase	(GREEN) Would substantially reduce effects on tidal range; thereby reducing adverse effects on intertidal mudflats and sandflats by: B3 – 40% less L2 – 70% less Also reduces adverse effects upon birds.	(RED) No precedent	(AMBER) Modelling has shown measure to be effective	(GREEN) Would be implemented as integral part of main scheme B3 would take an additional 18 months to full generation under Ebb & Flood compared to Ebb only.	(RED) Adverse implicatio ns for fish passage	(RED) Averse implicatio ns for navigatio n.	costs? NO Adverse implications to biodiversity and society& economy
		M2. Operational management of barrage/lagoon regime: sluice management, - sluicing after the generation period, combined with early commencement of turbine generation, in ebb only mode. (2) Change water levels to prevent or reduce effect of tidal range reduction. See Marine Ecology topic paper.	Applies to B3, B4, B5 & L2 (L3d is ebb/flood)		Up to 5% reduction in energy yield for ebb generatio n schemes.	(GREEN) The use of sluicing after generation, combined with early start of turbine generation, has the potential to reduce intertidal habitat loss for all ebb-only alternative options (based on studies using modern turbines). For B3, this could potentially lead to low water levels being lowered by up to 0.5m for B3, thereby potentially reducing intertidal habitat loss by up to 500ha.	(RED) No precedent	(AMBER) Modelling has shown measure to be effective	(GREEN) Would be implemented as integral part of main scheme	(AMBER) No major effects envisage d, but more detailed modelling needed on effects on fish needed to confirm this	(GREEN) No major effects envisage d	YES – for B3, B4, B5 & L2 Effective and only minor impacts on energy cost.

Thank you for your attention!

