EMEP monitoring strategy, 2020-2029 **United Nations** ECE/EB.AIR/GE.1/2019/21-ECE/EB.AIR/WG.1/2019/14 **Economic and Social Council** Distr.: General 1 July 2019 Original: English ### Timeline: Continuous communication with funding agencies, measurement community and data users #### <u>Technical requirements</u> - Consultations with EMEP Steering Body/EMEP TFMM - Internal workshop at NILU - Draft1 sent to MSC-W and MSC-E - Draft2 for TFMM May 3rd, 2018, special session at TFMM - Written input and comments by June 2018 - Draft3 available August 2018 - Draft4 available for TFMM May 2019 #### Strategy text - First draft prepared by EMEP-CCC, available August 2018 - Second draft, availble March 2019 - 3rd draft presented at TFMM May 2019, revised again late May. Clarifies typical questions/comments received on previous strategies Updated to reflect status of external frameworks Ambitious in scope, but with relaxations wrt implementation ## EMEP levels shortly explained: - Level 1, Basic monitoring, largely engages governmental agencies and institutes and is based on long-term funding. Standardized methods and data products. QAQC internal, partly overlap with EU-Directives based monitoring. Data reported to EMEP. - <u>Level 2</u>, More advanced or costly observations, generally by research organizations, close links to RI-initiatives. Standardized methods and data products, external QAQC may occur. Data reported to EMEP. - <u>Level 3</u>, typically research oriented. Often no standard methods or QAQC systems in place. Often no permanent long-term committment. Also other locations and «representativeness» than at Level 1 and level 2. Data reported or made available to EMEP (eg. special chapters in EMEP reports). | Inorganic compounds in precipitation | SO ₄ ²⁻ , NO ₃ -, NH ₄ +, H ⁺ (pH), Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , Cl ⁻ , precipitation amount | 24 hours | |--------------------------------------|---|---------------------------------| | Inorganic compounds in air | SO ₂ , SO ₄ ² -, NO ₃ -, HNO ₃ , NH ₄ +, NH ₃ , (sNO ₃ , sNH ₄), HCl, Na ⁺ , K ⁺ , Ca ₂ ⁺ , Mg ₂ + | 24 hours | | Elemental and Organic Carbon | EC and OC in PM _{2.5} | 24 hours /7 days | | Nitrogen dioxide | NO_2 | 1 hour/24 hours | | Ozone | O_3 | 1 hour | | PM mass concentration | $PM_{2.5}, PM_{10}$ | 24 hours | | Heavy metals in precipitation | Cd, Pb (1st priority), Cu, Zn, As, Cr, Ni (2nd priority) | 7 days | | Meteorology | Precipitation amount (RR), temperature (T), wind direction (dd), wind speed (ff), relative humidity (rh), atmospheric pressure (pr) | 24 hours (RR),
others 1 hour | ### Oxidant precursors and gaseous short-lived climate pollutants | Nitrogen oxide | NO | 1 hour | |--------------------|---|---| | Light hydrocarbons | C ₂ –C ₅ , BTEX (Benzene, Toluene, Ethylbenzene and Xylene) | 1 hour/grab sample
once or twice per
week | | OVOCs | Aldehydes and ketones | Absorbing Solution tube, once or twice per week | | Hydrocarbons | C_6-C_{12} | 1 hour/ABS tube,
once or twice per
week | | Methane | CH ₄ | 1 hour | | Carbon Monoxide | CO | 1 hour | Level 2 - "additional variables to be measured at a subset of sites - EMEP level 2 Recommended temporal resolution ## Particulate matter (PM) observations contribute to the assessment of particulate matter and its source apportionment | PM mass | PM_1 | 1 hour | |---|--|-----------------| | Elemental and Organic Carbon in air | EC and OC in PM ₁₀ | 24 hours/7 days | | Mineral dust in PM ₁₀ | Si, Al, Fe, Ca | 24 hours/7 days | | Particle light
absorption/equivalent black
carbon | Light absorption coefficient, eBC | 1 hour | | Particle number concentration | d y >10nm | 1 hour | | Particle number size distribution | dN/dlogDp, (sub/supermicrometer) | 1 hour | | Particle light-scattering coefficients | Light-scattering coefficient, Light backscatter coefficients (multi-wavelengths) | 1 hour | | Particle chemistry speciation | Non-refractory organic and inorganic composition (ACSM, AMS) | 1 hour | | Aerosol Optical Depth | AOD at 550 nm | 1 hour | | | | | <10nm Naming updated according to ACTRIS/GAW Level 2 - "additional variables to be measured at a subset of sites - EMEP level 2 Recommended temporal resolution ## Acidification and eutrophication observations contribute to the assessment of nitrogen chemistry, influence by local emissions and dry deposition fluxes Gas particle ratio of N-species NH₃/NH₄⁺, HNO₃/NO₃ - (artefact-free methods) 1 hour/24 hours Gas particle ratios of N-species NH₃, NH₄⁺, HNO₃, NO₃- (HCl) (complementing the filter pack sampling) 1 month «moved from level 1» Level 2 - "additional variables to be measured at a subset of sites - EMEP level 2 Recommended sites" Recommended #### Heavy metals observations contribute to the assessment of mercury and heavy metals fluxes | Mercury in precipitation | Hg | 7 days | |--------------------------|--|------------------------| | Mercury in air | Hg (TGM) | 1 hour/24 hours/7 days | | Heavy metals in air | Cd, Pb (1st priority), Cu, Zn, As, Cr, Ni (2nd priority) | 7 days | Level 2 - "additional variables to be measured at a subset of sites - EMEP level 2 Recommended sites" temporal resolution ## Persistent organic pollutants (POPs) observations contribute to the assessment of persistent organic pollutants POPs in precipitation PAHs, PCBs, HCB, chlordane, HCHs, DDT/DDE 7 days DDT/DDE POPs in air 24 hours/7 days/24 hours or 48 hours PAHs, PCBs, HCB, chlordane, HCHs, once or twice per week (depending on sampling with respect to artefact problems) Level 2 - "additional variables to be measured at a subset of sites - EMEP level 2 Recommended sites" temporal resolution # Tracers observations contributes to the assessment of individual long-range transport events and their source apportionment Halocarbons CFCs, HCFCs, HFCs, PFCs, SF₆ 1 hour | Level 3 – Research-based and voluntary measurements, preferably, but not limited to EMEP level 1/2 sites. May also include both campaign and long-term observations. Observations contribute to the understanding of processes relevant to long-range transport of air pollutants and support model development and validation | | Recommended
temporal resolution | |--|--|------------------------------------| | NOy chemistry | HNO ₂ , NO ₃ , N ₂ O ₅ , PAN, organic nitrates | 1 hour | | Ammonia in emission areas (optional) | NH_3 | 1 month | | Vertical profiles | O ₃ soundings, aerosol LiDAR | 1 hour | | Organic tracers, OC fractionation | Levoglucosan, others, Water soluble and water insoluble OC (WSOC/WINSOC) | 24 hours/7 days | | Organic tracers | Levoglucosan, others | 24 hours/7 days | | Isotopic information | OC, EC, VOCs, CH4, CO2, Hg | 24 hours/7 days | | Greenhouse gases | CO_2 , N_2O | 1 hour | | Hydrogen | H_2 | 1 hour | | Hydroxyl radical | OH- | 1 hour | | Hydroperoxide | $\mathrm{H}_{2}\mathrm{O}_{2}$ | 1 hour | | OVOC Alcohols | Methanol, Ethanol | ABS tube, once or twice per week | | Major inorganics in $PM_{2.5}$ and PM_{10} | SO ₄ ²⁻ , NO ₃ -, NH ₄ +, Na ⁺ , K ⁺ , Ca ₂ +, Mg ⁺ (Cl ⁻) | 7 days | |---|--|---------------------------| | Mercury speciation | RGM and TPM | 1 hour/24 hours/7 days | | POPs passive sampling at higher spatial resolution | For example, PAHs, PCBs, HCB, chlordane, HCHs, DDT/DDE | 1 month | | POPs other than those listed above, as well as organic contaminants of emerging concern | For example, PBDEs, PFAS, SCCPs | As considered appropriate | | Dry deposition flux | nitrogen species, O ₃ , VOCs, particles, other | 1 hour | ### Levels and site densities - No change suggested to «level-approach» - Regionally representative sites (rural/remote) - Target site densities - «Implementation index» will remain an «in-official» measure