

Chemical Accident Risk Analysis

- Risk analysis is a <u>prerequisite</u> for understanding <u>likelihood</u> and <u>severity</u> of possible chemical accidents originating from hazardous industrial activities.
- The analysis allows:
 - Identification of <u>critical</u> equipment.
 - Evaluation of effectiveness of <u>prevention and mitigation</u> measures.
 - Prioritization of <u>safety</u>
 <u>measures needed</u> to reduce the risk.
 - Better <u>decision making</u> process.

IEC 300-3-9 (1995) IEC Guide 73 (2002)

Risk Analysis Process

Accident Scenarios

Prerequisites of Chemical Accident Risk Analysis

- Understanding of the fundamentals of risk analysis
- Knowledge on <u>industrial units and processes</u>
- Knowledge on <u>accident scenarios</u>
- Knowledge on <u>hazardous consequences</u>
- Natech: Knowledge on natural hazard impacts
- Natech: Knowledge on Natech accident scenarios
- Methods and models
- Tools

Accident Damage Analysis Module

- ADAM is a software specifically developed to assist the Competent Authorities of the EU Member States and Neighbouring Countries in quickly assessing the potential consequences of a chemical accident.
- It calculates the physical effects of an accident in terms of thermal radiation, overpressure or toxic concentration that may result from the loss of containment of a flammable or toxic substance.
- Desktop and online versions are available for governmental and research organisations by request.

ADAM: Methodology

INPUT DATA

Substance Amount Operating Conditions Failure mode

Substances

Environment Conditions

Model Assumptions

CALCULUS MODULES

Module 1
Source Terms

Releases Pool evaporation

Module 2
Physical Effects

Toxic dispersions Fires Explosions

Module 3 Vulnerability

Probit Functions Thresholds (PAC, LC50,....)

ADAM: Features

- Numerous source and consequence models
 - Instantaneous & finite duration releases
 - Pool formation & evaporation
 - Pool fire (Modified TNO; Shokri & Beyler; Mudan)
 - Jet fire (Chamberlain; Johnson; Cook)
 - Fireball
 - VCE (Equivalent TNT; TNO multienergy; BTS)
 - Toxic dispersion (SLAB, time-dependent, w/rainout)
- Fast analysis
 - Fine-tuned
 - Optimised
- Advanced visualization

ADAM: Output

- Source term graphs
- Iso-effect contours
- Consequence maps
- Lethality curves / maps
- GIS data

6 278.710069

18 61.792015

19 66.792015

20 71.792015 21 76.792015

22 81.792015

23 86.792015 24 91.792015

25 96 330000

Input data Results

14 41.792015 61.757648 15 46.792015 16 51.792015

Tabular data

7 131.262548 211.856842 2194.725995 337.538330

92.623831

182 655827 9 048051

263 407457

26 101.330000 280.253242 7.031789 27 106.330000 276.454812 6.211396 28 111.330000 270.912535 5.015528

124.697092 9.229857

205.851957 8.966744

245.924125 8.753882

280.090607 8.014795

281 627974 7 658514

961.382705 833.144268

645.601913

575.970937

420 414896

326 833901

95.629944 95.424919

95.188728

94,781303

94.236931

93.878433

93.260094

92 962013

Natech Risk Analysis

- Characteristics that differ from ordinary chemical accidents
 - Simultaneous releases from multiple sources over wide areas
 - Extreme environmental conditions
 - Malfunctioning of accident <u>prevention measures</u>
 - Unavailability of lifelines needed for <u>accident mitigation</u>
 - Competition for scarce <u>response resources</u>
 - Hazardous <u>releases</u> hampering <u>emergency response</u> activities
 - Non-functional or inappropriate standard <u>civil protection measures</u>
- Necessary additional risk analysis steps
 - Characterization of <u>natural hazard severity</u>
 - Identification of vulnerable <u>critical equipment</u>
 - Estimation of severity and likelihood of natural-hazard damage
 - Estimation of potential <u>Natech accident scenarios</u>
 - Analysis of consequences considering simultaneity and abnormality

Rapid Natech Risk Analysis and Mapping System

- RAPID-N is a <u>web-based</u>, <u>publicly</u>
 available **decision-support** system
 for Natech risk analysis and mapping.
- Unites <u>natural-hazard impact</u> assessment, Natech <u>scenario</u> <u>development</u> and <u>consequence</u> <u>analysis</u> in **one tool**.
- Features a modular, extensible and collaborative architecture <u>facilitating</u> data entry and quick analysis.
- Users are from > 120 institutions globally.

RAPID-N: Methodology

RAPID-N: Features

- Quick local and regional analysis
 - Multiple units
 - Multiple facilities
- Dynamic model building
 - Scalable
- Extensible modeling platform
 - User-defined estimators
- Data estimation
- Global data coverage
 - > 22,000 earthquakes
 - > 5,500 industrial facilities
 - > 64,500 plant units

RAPID-N: Output

RAPID-N in Action: Side Event

industrial accidents (NATECHS) which may also have cross-boundary consequences.

RAPID-N is a <u>unique</u>, <u>publicly available</u> tool that allows the **rapid analysis of NATECH risk**.

Please join us for this side event hosted by EC Joint Research Centre, which will introduce the basics of **NATECH risk assessment** and **demonstrate** the capabilities of RAPID-N with case-studies.

Tuesday, December 4th 14:15 - 15:00, Room VII

Usability: Quality Control

- Benchmarking with other existing software tools
- Comparing the results with experimental data
- Comparing the results with reference data

Unit	g
Exact Estimate	No
Validity Conditions	Moment Magnitude: 3.3-
Precedence	Auto
Disabled	No
References	Boatwright, J.; Bundock, magnitude inferred from
Notes	See Douglas (2004), pag Validation: M = 5.0, d = 10 km, NEH M = 6.0, d = 10 km, NEH M = 5.0, d = 100 km, NE
Access	Public

EUR 29363 EN

Usability: Resources

ADAM

User Manual (Help)

RAPID-N

<u>User</u> **Manual**

Technical Guidance

Training Manual*

Minerva Portal

Case **Studies**

Potential Users and Applications

- Risk analysis specialists
- Public authorities
- Inspectors
- Emergency managers
- Emergency responders

- Risk management
- Land-use planning
- Emergency planning
- Early warning
- Preliminary damage assessment
- Preliminary consequence analysis

Support and Capacity Building

- Hands-on trainings
 - EU Member States
 - EU E&IA countries
 - EU Candidate and Neighbour countries
 - Safety experts (e.g. MoE, Bulgaria)
 - Research organisations (e.g. INERIS, France)
- Emergency management support
 - EU RICHTER Caraibes 2017
 - EDREX
- Technical support
 - Regional risk analysis (e.g. <u>Marsaxlokk, Malta</u>)
 - User support (E-mail, not 24/7)

On-going R&D and Outlook

ADAM

- Software distribution to the interested stakeholders
- Systematic sensitivity studies
- Module on pipelines
- Module on physical blast of vessels
- Module on CFD for atmospheric dispersion

RAPID-N

- Enhanced scientific computation framework
- Industrial data set
- Early warning and alerting
- Offline version
- ADAM / RAPID-N integration

Stay in touch

ADAM: http://adam.jrc.ec.europa.eu

RAPID-N: http://rapidn.jrc.ec.europa.eu

EU Science Hub: ec.europa.eu/jrc

Twitter: @EU_ScienceHub

Facebook: EU Science Hub - Joint Research Centre

LinkedIn: Joint Research Centre

YouTube: **EU Science Hub**

References

- Fabbri, L., Binda, M., and Bruinen de Bruin, Y. (2017) Accident Damage Analysis
 Module (ADAM) Technical Guidance, EUR 28732 EN, doi:10.2760/523638
- Fabbri, L., Binda, M., and Wood, M. (2018) Evaluation of the Accident Damage Analysis Module (ADAM) Tool, EUR 29363 EN, doi:10.2760/582513
- Girgin, S. (2012) RAPID-N: Rapid Natech Risk Assessment Tool User Manual, EUR 25164 EN, doi:10.2788/54044
- Girgin, S. and Krausmann, E. (2013) RAPID-N: Rapid Natech risk assessment and mapping framework, Journal of Loss Prevention in the Process Industries, doi:10.1016/j.jlp.2013.10.004
- Girgin, S. and Krausmann, E. (2017) Case-study Application I: RAPID-N, in "Natech Risk Assessment and Management", Krausmann et al. (eds.), Elsevier, doi:10.1016/B978-0-12-803807-9.00010-3
- ADAM: http://adam.jrc.ec.europa.eu
- RAPID-N: http://rapidn.jrc.ec.europa.eu

