Managing the Deep Thermal Groundwater Body in the Lower-Bavarian-/ Upper-Austrian Molasse-Basin

Workshop "Water allocation in transboundary basins" Geneva, 16 – 17 October 2017

Michael Belau, Referat 57

Outline:

- Location and Historical Developments
- Setting up the frame for cooperation
 - objective and legal framework
 - operational framework
- > Tools for sustainable management of thermal water resource (Groundwater-models)
 - 2-D Groundwater Model
 - Guidelines for the use of thermal water in in the Lower-Bavarian-/Upper-Austrian Molasse-Basin
- Sustainable management: Does it work in this case?

Lower-Bavarian Spa-Region - Impressions:

Therme Eins Bad Füssing

Lower-Bavarian Spa-Region - Impressions:

Europatherme Bad Füssing

Lower-Bavarian Spa-Region - Impressions:

Johannesbad Bad Füssing

Geological overview (without cretaceous and tertiary overlying strata)

Geological cross-section NW – SE, highly exaggerated

Most important historical developements

- 1938: first well in Füssing
- > 1947: first temporary bathing facilities in Füssing
- 1953: An expertise by the University of Munich attested healing properties of thermal water.
- > 1963/64: Second and third well in Füssing. Artesian thermal water was found in both wells.
- ➤ 1969: Füssing became "Bad" Füssing
 → possibilities to cure and prevent deseases by applications with thermal water were officially recognized and appropriate infrastructures were promoted
- > 1973: well-drillings in further locations
- ➤ **1988:** With an accommodation capacity of 13.300 beds and ca. 3,2 Mio. overnight accommodations, Bad Füssing reached the peak.
- 1990: start of exploitation in Austria for geothermal purposes, excellent geological setting
 - Situation starting in 1990: The exclusive use for **geothermal energy in Austria** is limited by the exclusive use of thermal water for **balneological purposes** in Germany BY)
 - → A sustainable, harmonised management in close cooperation is needed to ensure that the thermal groundwater is not overstressed

Setting up the frame for cooperation – Objective and legal framework

- Objective: sustainable management in close cooperation between D and A
- Legal framwork: Regensburg Treaty (1987) on Water Management Cooperation in the Danube River Basin.

Setting up the frame for cooperation – operational framework

- ➤ 1989/90: Establishment of the ad-hoc-group "Deep Water" to ensure a sustainable management of the thermal groundwater-body based on:
 - scientific knowledge,
 - balanced monitoring and
 - appropriated tools
 in particular: 2D groundwater model with the objectives to describe and balance the transboundary
 Groundwater-body
 - → Incorporate strategies on how to manage the Groundwater in terms of quantity and quality ("Guidelines for the use of thermal water in the Lower-Bavarian-/Upper-Austrian Molasse-Basin)
- 2002: Ad-hoc-group "Deep Water" was renamed in Expert-group "Thermal Water"

Tools for sustainable management of thermal water resource: 2D - Hydraulic Groundwater-Model (building up from 1995 to 1998)

Model Boundarys

Flow Direction and Sources and Sinks

Thermalwater Budget Components

- model boundary
- **Surface Geology**
- quarternary, tertiary
- cretaceous
- upper jurassic
- alpine nappe
- crystalline rock

Deep (Hydro-)Geology

- crystalline rock
- high salinity in
 - thermalwater-aquifer

Tools for sustainable management of thermal water resource: 2D - Hydraulic Groundwater-Model (building up from 1995 to 1998)

Model Boundarys

Flow Direction and Sources and Sinks

Thermalwater Budget Components

hydraulic head / potential [m asl]

- contour line interval: 10m
- thermalwater flow direction
- influx from crystalline
- model boundary

thermalwater site

- # extraction
 - re-injection

Tools for sustainable management of thermal water resource: 2D - Hydraulic Groundwater-Model (building up from 1995 to 1998)

Model Boundarys

Flow Direction and Sources and Sinks

Thermalwater Budget Components

model boundary

fluid flow at boundary

influx

outflux

recharge

= + 100 l/s

+ 160

discharge

☐ - 20 l/s

- 160

extracted thermalwater [I/s net 2015]

- extraction
 - *re-injection

"Guidelines for the use of thermal water in in the Lower-Bavarian-/Upper-Austrian Molasse-Basin"

→ ... to be found on: www.lfu.bayern.de

Guidelines for the use of thermal water in in the Lower-Bavarian-/ Upper-Austrian Molasse-Basin:

- Provide technical harmonized regulations concerning exploitation, monitoring and further worksteps help to
 - receive annual status reports with standardised exposures and compiled measurements, which easily can be read and interpreted,
 - generate a data pool for modelling purposes,
 - describe the (qualitative and quantitative) status of the Groundwater-body as claimed by the European Water Framework Directive ("Wasserrahmenrichtlinie") and to
 - Solve the daily questions the authorities deal with
- One important objective is to keep the natural pressure regime in the Groundwater-body.
 - → Reinjection of the water after geothermal use by reinjection well (which is located in the same Groundwater-body)
 - → As balneologically used water must not be reinjected, it must be strictly garantueed, that the used amount of water doesn't exceed the calculated demand.

Calculating an appropriate demand of water (page 28):

Fields of application	Therapeutic purpose			Wellness purpose	Leisure purpose	EXTERNE KUR- und THERAPIE- BEREICHE
Betriebsweise	Kreislauf- betrieb	Durchlauf- betrieb	Füll- betrieb	Kreislaufbetrieb	Kreislaufbetrieb	Spezifische Bemessungs- größen je nach Anwendungs- bereich
Beckengröße	bis 100 m³	bis 40 m³	bis 400 I			
Specific demand	150-200 I pro Person und Tag	4 m ³ pro Person und Stunde		120–150 l pro Person und Tag	60–120 I pro Person und Tag	
Austauschzeit	1–3 Tage			7–10 Tage	15 Tage	

Sustainable management: Does it work in this case?

Further information:

Guidelines for the use of thermal water in in the Lower-Bavarian-/ Upper-Austrian Molasse-Basin

www.lfu.bayern.de/wasser/thermische_nutzung/doc/thermalwasser_grundsat zpapier.pdf

Hydraulically-thermally coupled 2D-Groundwater-model in the deep aquifer of the Lower-Bavarian-/ Upper-Austrian Molasse-Basin

www.lfu.bayern.de/wasser/thermische_nutzung/doc/thermalwasser_molasse becken.pdf

Basic investigations regarding thermic effects caused by the use of thermal water in Lower-Bavaria/ Upper-Austria

www.lfu.bayern.de/wasser/thermische_nutzung/doc/kurzbericht_thermal.pdf

Thank you for your attention!

20 © LfU

Main Results of the 2D – Hydraulic Grounswater Model:

- currently no over extraction of thermal water from deep groundwater-body
- frame for thermal water allocation in central area is limited by 20-25% of the existing thermal water budget
- effects of future extractions/ re-injections on the thermal water budget and potential can be forecasted
- a total re-injection of thermally used water is mandatory

Hydraulic-Thermal Coupled 3D Groundwater-Model (central area):

Will the intensive geothermal use (with re-injection wells) result in an large-scale lowering of thermal water temperatures and existing pressure conditions and put this the balneological use into question?

Investigations: 2005 to 2008 (EU-cofinanced)

Interreg IIIA-project "Basic investigations regarding thermic effects caused by the use of thermal water" including the **local hydraulic-thermal coupled 3D Model** in the central area.

Main Results (regarding the central area):

- Geothermal uses cause only a limited local thermal impact.
- Hydraulic effects of water use for balneological purpose are much larger than thermal effects caused by reinjection (thermal purpose)
- → No need to couple the new 3D Hydraulic Groundwater Model with a thermal model

Findings and Lessons Learned:

→ Consider and follow formal needs ...

- ... by reporting to superordinated committee and receiving resolutions
- ... by allocating human resources by employers
- ... related to applying for and spending public budget resources

→ Safeguard the quality of work, for example by ...

- ... development and maintaining of adequate forecasting tools
- ... involving a wide range of different professions
- ... permanent harmonised monitoring and logging of data

→ Achieve acceptance from outside, by ...

- ... getting to know economical facts and aims particularly regarding the launching and developping of economical projects
- ... aiming to achieve consensual solutions, thinking about the possibility to address cases of controversy or fundamental questions/ decisions to superordinated committee(s)
- ... emphasizing the loyalty of members to official legal framework and independence from interests of parties standing on the outside

23 © LfU